
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
SIGBio Record 
 
Newsletter of the SIGBio 
ACM Special Interest Group  
 
 
 
 
 
 
 
 
 
 
 
 
Volume 3, Issue 2, May 2013 ISSN 2159-1210 



ACM SIGBio Record 

  

 
Notice to Contributing Authors to SIG Newsletters 
 
By submitting your article for distribution in this Special Interest Group publication, you hereby grant to ACM the 
following non-exclusive, perpetual, worldwide rights: 
 
• to publish in print on condition of acceptance by the editor 
 
• to digitize and post your article in the electronic version of this publication 
 
• to include the article in the ACM Digital Library and in any Digital Library related services 
 
• to allow users to make a personal copy of the article for noncommercial, educational or research purposes 
 
However, as a contributing author, you retain copyright to your article and ACM will refer requests for republication 
directly to you. 

 



ACM SIGBio Record 

  

Notes from Chair 
 
 
SIG name change: 
Following the SIG Community Meeting held on Oct. 8, 2012 in Orlando, majority of 
members favor to change our SIG name to reflect more closely our full scope of 
Bioinformatics, Computational Biology and Biomedical Informatics. We requested a 
name change and the ACM SGB-EC has endorsed a name change for 
SIGBioinformatics to SIGBio. The scope in our bylaw is amended as follows: 
 
New Article 1 of the SIGBio Bylaws is to read as follows:   
 
Article 1. Name and Scope 

a.  This organization will be called the Special Interest Group on 
Bioinformatics, Computational Biology and Biomedical Informatics 
(SIGBio) of the Association for Computing Machinery, Inc. (the ACM).  

b. The scope of the SIGBio specialty is bioinformatics, computational biology 
and biomedical informatics. 
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Editor in Chief’s Notes: 

 
 
 
This issue will present some novelties. First of all, we are pleased to announce the 
change of the name of the Newsletter in SIGBio record. The change reflects the change 
of the name of the SIG.Consequently newsletter will have a broader scope. We are also 
pleased to announce the collaboration of Prof. Pierangelo Veltri as novel associate 
editor.   
 
This issue presents two contributed articles:  
 
Information Entropy Based Methods for Genome Comparison that explores methods 
for comparison of Genomes 
 
Computational regulatory network construction from microRNA and transcription 
factor perspectives, that discusses a novel research area on computational biology. 
 
 
We thank contributors for this issue and hope that readers will find interesting 
references to their work in Bioinformatics and Health Informatics area. 
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ABSTRACT
As more genomic and epigenomic data becomes available, it
has become possible to construct biological networks from
the omics data. Among the biological networks, understand-
ing gene regulatory mechanisms is a very important research
problem that can reveal condition-specific, e.g., disease-specific,
gene regulatory mechanisms. In this paper, we review the
current development in the study of constructing gene reg-
ulatory networks from microRNA and transcription factor
(TF) perspectives. TFs and microRNAs play crucial role in
gene regulatory networks since they regulate tens to hun-
dreds of genes, which can be seen naturally as hubs in the
network. This review consists of three parts. The first part
summarizes recent works on TF regulatory network recon-
struction in two sections, one on TF network reconstruction
using time series gene expression data and the other on TF
network construction by incorporating prior knowledge. The
second part is about microRNA network construction in two
sections, one on methods based on seed sequence matching
and the other on the integrated analysis of gene and mi-
croRNA expression data sets. The last part summarizes
recent works on the integration of both TF and microRNA
with target genes, which is a much more challenging research
problem.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory

Keywords
MicroRNA, Transcription factor, Target prediction, Regu-
latory network

1. INTRODUCTION
Genome-wide data such as ChIP-based assay, ChIP-chip and
more recently ChIP-seq, data for transcriptional networks
or whole genome transcriptome data have been accumulat-
ing rapidly. Such genome wide data can be effectively used
to construct or infer gene regulatory networks. Gene reg-
ulation is a dynamic process in cells, responding to stimuli
by various agents such as drugs, bacteria, virus, and harsh
weather conditions. Thus understanding the dynamics of
the networks is very helpful studying biological mechanisms
including diseases [7]. When analyzing the network, one of
the most important part of the analysis is to identify the
core or hub of the network. TFs and microRNAs (miRNAs)
regulate up to several hundreds of genes, so they can be
seen naturally as the core of the gene regulatory networks.
Thus, in this survey, we classified gene regulatory networks
into three categories: TF involved gene regulatory networks,
miRNA involved gene regulatory networks and gene regula-
tory network involving both TF and miRNA simultaneously.
There have been many studies for the first and second cate-
gories, but study on the last category is just in the beginning
stage, probably because of its complexity of performing in-
tegrated analysis.

2. TF INVOLVED GENE REGULATORY NET-
WORKS

There are many computational methods to infer transcrip-
tional regulatory networks. Survey based on the network
model architecture is the most popular way [4][7]. However,
our survey is based on the types of data used to infer net-
works so that the survey can be more practical for users.
Network construction methods in this survey are classified
into two categories: time-series gene expression data based
approach and prior knowledge based approach.

2.1 Time-series gene expression data based ap-
proach

Time-series gene expression data is necessary to understand
biological processes since the biological processes are dy-
namic and often time dependent [1]. Thus many genome-
wide gene expression data are time series data after pre-
designed stimuli given, for example, drug treatment.

Ernst et al. introduced the DREM algorithm to model dy-
namic gene regulatory events and it used input-output hid-



den Markov model to integrate time series expression data
with static ChIP-chip or motif data [2]. It takes a binary
matrix of predictions of TF-gene regulatory interactions and
time-series log-ratio gene expression data against the un-
stressed control as inputs. The algorithm models expres-
sion patterns as series of bifurcation and assigns genes to
paths according to each gene’s expression pattern. Then, to
each bifurcation points, DREM assigns TFs that regulate
the genes. This method was used to construct networks us-
ing yeast response data and recovered many of the known
gene interactions. It also predicted unknown interactions
that were validated experimentally. DREM 2.0 [14] is the
most recent version.

Li et al. introduced DELDBN [12] that integrated ordi-
nary differential equation (ODE) models with the dynamic
Bayesian network analysis. Steady-state equation (1) is ap-
plied to short sampling time interval data and dynamic state
equation (2) is applied to long sampling time interval data.

xi(t+ 1) =
∑

βijXj(t) (1)

xi(t+ 1)− xi(t)
∆t

=
∑

βijXj(t) (2)

Where xi(t), xj(t) are the expression level of gene i, gene j
at time t respectively and βij is the effect of gene j on gene i.
Then DELDBN uses local causality based dynamic Bayesian
network analysis to learn through the above two equations.
Unlike other Bayesian network analysis, DELDBN uses a
low time complexity algorithm and it is scalable to infer
large networks. An in vivo benchmark data set from yeast
was used to demonstrate the performance of the algorithm,
showing the highest sensitivity and accuracy in comparison
with other approaches. To show the scalability, DELDBN
inferred the BRCA1 network using the human Hela cell time
series gene expression data that is larger than the typically
used yeast data set.

Song et al. introduced KELLER [16], a kernel-reweighted
logistic regression method, to infer the latent time-evolving
network of gene interactions. With the assumption that
time-evolving networks change smoothly, similarity between
networks measured in a close time interval is higher than net-
works measured in a far time interval. Therefore, the prob-
lem of estimating dynamic networks can be reduced to in-
ferring a series of static networks by aggregating temporally
adjacent networks by reweighting them. To evaluate the al-
gorithm, a microarray gene expression data of Drosophila
melanogaster with 66-step time series in a full life cycle
of 4028 genes was used. The analysis focused 588 genes
that were known to be related in the developmental pro-
cess. KELLER successfully inferred time-evolving network
of Drosophila melanogaster and showed that many genes had
diverse functionalities that were different at each stages.

2.2 Prior knowledge based approach
Although the cost for generating genome-wide data is de-
creasing rapidly, it is still difficult to obtain enough omics
data in one experiment due to the limited budget and time.
More importantly, knowledge obtained from many previous

studies are valuable. Thus developing computational meth-
ods that can incorporate prior knowledge is very important.

Li et al. [11] introduced an network-constrained regulariza-
tion method that integrated prior knowledge with the form
of networks like pathways. Predictors in the model are ex-
pression levels of genes with underlying network structures
that can be obtained from prior knowledge. It presents a
network-constrained penalty which is aggregated form of the
lasso penalty and the penalty of Laplace matrix. Network-
constrained regularization criterion is defined as follows,

L(λ1, λ2, β) = (y−Xβ)T(y−Xβ) +λ1|β1|+λ2β
TLβ (3)

Where y is response vector, X is design matrix, λ1 > 0
and λ2 > 0 are user defined constants, β1 =

∑p
j=1 |βj |

is the L1-norm which leads sparseness of the result and
βTLβ leads smoothness. With the criterion, estimator β̂ =
argminβ L(λ1, λ2, β) is obtained. The algorithm was ap-
plied to the microarray gene expression data for glioblas-
toma. With two independent groups of clinical data, one
was used for training samples and the other was used for the
test set. As a prior knowledge based data, 33 KEGG regu-
latory pathways were used and the goal was to find disease
related subnetworks. The analysis successfully discovered
subnetworks that were known to be related with glioblas-
toma.

Greenfield et al. [3] developed two methods that incorpo-
rated prior knowledge for the analysis of time series or static
gene expression data to infer dynamic gene regulatory net-
works. Both methods used the same ordinary differential
equation model below.

dxi
dt

= −αixi +
∑
p

βi,pxp, i = 1, ..., N (4)

Where xi is gene, α > 0 is the first order degradation rate,
β is a set of parameters to be estimated and Pi is the set of
potential regulators for xi. It is from the assumption that a
gene is regulated in proportion to the amount of regulators
and the gene itself. Based on this equation, two methods,
Modified Elastic Net (MEN) and Bayesian Best Subset Re-
gression (BBSR), are proposed. MEN is a modified form of
existing regression application called Elast-Net and BBSR is
a Bayesian regression based approach with Zellner’s g prior.
It was shown that the proposed methods by utilizing prior
knowledge were tolerant to the errors in the expression data.

3. MIRNA NETWORK INFERENCE
The miRNA network inference problem is to infer a net-
work of miRNA and mRNA of protein coding genes. Genes
targeted by miRNAs are down regulated since miRNA in-
terferes with coding genes at the transcription and transla-
tion levels. The miRNA network inference problem can be
largely divided into two sub-topics. The first one consid-
ers only sequence paring information between miRNA and
mRNA since miRNAs interfere with mRNAs by hybridiza-
tion, i.e., sequence pairing. This sequence only prediction



method can be a good way for finding putative targets of
miRNAs but they usually have very high false positive rates.
The second method incorporates expression profiles of miR-
NAs and mRNAs for the miRNA network construction. The
main idea of the second method is to utilize negative rela-
tionship between miRNA expression level and mRNA ex-
pression level when a target relationship holds.

3.1 Sequence pairing algorithms for target find-
ing

It is well known that miRNA binds to a reverse comple-
ment sequence in the 3′UTR region of mRNA and the cor-
responding mRNA is degraded. In eukaryotes, a seed re-
gion of miRNA at the five prime end site that matches with
mRNA is a predominant factor of mRNA repression. This
information can be used for algorithms of finding uncovered
miRNA target mRNAs.

TargetScan[10] utilizes that many miRNAs and their tar-
get sites are conserved across the multiple species (human,
mouse, pufferfish). Short sequences of 2-7 nucleotides of
miRNA are defined as the seed region and they are matched
perfectly to 3′ UTR. After the perfect matching, a thermo-
dynamics based binding score between miRNAs and puta-
tive targeted regions of mRNAs is calculated and it is used
to rank the targeted genes. The final selection of targets are
determined by a pre-selected rank threshold and a binding
score threshold.

PicTar[9], like TargetScan, uses the conserved target site
information across species and the thermodynamics based
binding score for target inferencing. First, PicTar locates
all possible target sites using nuclMap. Putative target sites
are filtered out if the free energy between the miRNA and
the targeted mRNA is higher than a preset cutoff value.
When there are multiple binding sites in 3′ UTR region of
mRNA, PicTar uses the maximum likelihood score to sort
out true target sites. The score is based on the posterior
probabilities of the binding sites that are targeted by the
miRNAs compared to background of 3′ UTR regions that
are not putative miRNA binding sites. This score can sort
out competition between different miRNAs on the same re-
gions and can reduce the false positive rate by considering
background probability of 3′ UTR region.

Kertesz et al.[8] proposed another thermodynamics-model
based approach, PITA, that consideed secondary structure
opening energy for finding miRNA target recognition. Like
TargetScan, PITA looks for perfect matches in the seed re-
gion and calculates binding score between the miRNA and
it’s putative target mRNA. In addition, PITA considers the
site accessibility of target sites. miRNA and their target
mRNA can have a secondary structure and should be un-
paired so that miRNA can attach to mRNA and then repress
the transcription of mRNA. This structure based condition
is enforced by calculating the free energy that is required to
unpair the secondary structure of target sites and miRNA’s
secondary structure. RNAFold is used for this calculation.
The final miRNA target interaction score is computed as
the difference between the binding score and the secondary
structure opening score.

3.2 Analysis with expression profiles
Although binding sites of miRNAs and their target regions of
mRNAs have similar sequences, the sequence analysis alone
cannot solve the high false-positive rate problem since core
sequences are very short. miRNAs repress mRNA at both
transcription and translational level. For the transcriptional
repressing, mRNA transcript expression decreases as expres-
sion levels of miRNA that targets the transcript increase.
Thus a miRNA:mRNA pair that shows a strong negative
correlation in their expression level have a high probability
of being a genuine target pair. This negative correlation
information is embedded in several computational methods.

MMIA[18] is a method for the integrated analysis of miRNA
and RNA expression data. The integrated analysis is per-
formed in two steps. The first step is to identify “differ-
entially” expressed miRNAs by clustering analysis. In the
second step, only genes that are targeted by differentially
expressed miRNAs are considered. The gene set is fur-
ther reduced by using sequence based target finding algo-
rithms such as TargetScan, PITA and PicTar, and also by
using negative correlation information between miRNA and
mRNA expression levels. MMIA divides the miRNA and
mRNA’s expression data to three clusters: a down-regulated
group, an up-regulated group and an unchanged group. It
predicts miRNA:mRNA target pairs when the miRNA be-
longs to a down(up)regulated group and mRNA belongs to
a up(down)regulated group. This approach can assure that
finding genuine and actual working miRNA:mRNA pairs but
also misses many actual miRNA:mRNA pairs whose expres-
sion is not significantly up(down) in the cell.

Muniategui et al.[13] proposed a linear model for indicat-
ing the degree of miRNA’s repressing mRNA transcription.
When sequence based algorithms report that K miRNA are
predicted to target mRNA j and cjk is an indicator that
miRNA k putatively target j-th mRNA, a model as below
is used:

xj =

K∑
k=1

βjkcjkzk + x0j + εj

where εj is an error term and x0j is an logarithm of the ex-
pression values when no miRNA targets the mRNA. With
this model, Lasso regression is used to finding β values min-
imizing below equation.

min
βj ,x

0
j

{‖xj −
K∑
k=1

βjkcjkzjk − x0j‖2 + λj ∗
K∑
k=1

|βjkcjk|}

Lasso regression with a constraint that β should be non-
positive for indicating only down-regulation of miRNA effect
and λj ∗

∑K
k=1 |βjkcjk| is the penalty term for enforcing the

sparsity of solution.

GenMir++[5] uses a linear model for expected mRNA ex-
pression values based on the equation below:

E[xgt|{sgk}, {zkt},Λ, µt, γt] = µt − γt
∑
k

λksgkzkt, λk > 0

when x is mRNA expression values, sgk is an indicator that
k miRNA targets g mRNA, µ is the background expression
of mRNA, γ is the tissue scaling factor. Using this lin-
ear model, a Bayesian network model is proposed. In the



Bayesian network model, target transcript expression level
x is dependent on a tissue scaling parameter, the miRNA
expression level, a regulatory weight, an indicator variable
for whether miRNA k truly targets transcript g and this
indicator is dependent on an indicator variable for miRNA
k putatively targets transcript g. P (S|X,Z,C,Θ) is esti-
mated using the Bayesian inference and the expectation-
maximization technique.

Joung et. al. [6] proposed a module based target finding
algorithms using the co-evolutionary machine learning ap-
proach and the estimation-of-distribution algorithm (EDA).
The detection of modules, (M ′, T ′) between miRNA set and
mRNA set that best fit in terms of the fitness function (see
below) needs to consider all subsets of M ′ and T ′ which is
computationally infeasible. Thus an evolutionary algorithm
was used to find the optimal solution. The fitness function
is:

F (M ′, T ′) = αBSM′T ′ + βECM′ + γECT ′ + V OL

when BSM′T ′ is a mean binding score between all pairs of
M ′ and T ′, ECM′ and ECT ′ are the expression coherence
scores of M ′ and T ′ each, and V OL is the volume term to
prevent finding a solution with one or two miRNA and mR-
NAs. Given the module fitness function, a co-evolutionary
approach is used to find an optimal solution. For miRNA
and mRNA, two populations are managed and learned in the
context of each other. Individuals are selected based on the
fitness function from the two populations and the probability
vector is updated. The probability vector denotes the prob-
ability of choosing a miRNA or mRNA to a miRNA:mRNA
target module. The updated probability vector is used to
generate new population.

4. TF-MIRNA INTEGRATED ANALYSES
A gene can be regulated by both miRNA and TF, thus infer-
encing target relationship should consider TF and miRNA
simultaneously.

Shalgi et al. [15] integrated widely used algorithms for the
miRNA target detection and the TF target detection to
construct regulatory networks. They analyzed these con-
structed networks to find local (network motif, hub genes)
and global (connectivity distributions) architectures in the
network. For the network construction, TargetScan and Pic-
Tar were used for miRNA target detection and TRANSFAC
was used for TF target finding. They used miRNAs and
their target genes that were conserved between 4 species (hu-
man, mouse, rat and dog). To reduce TF-gene interaction
candidates, only TF promoter regions conserved in ortholo-
gous genes from mouse and rat were used. Then they calcu-
lated hypergeometric p-value to finds significant miRNA-TF
co-occuring pairs. They compared the constructed network
with random models, detecting target hubs genes. In con-
structing randomized network, they preserved the number of
genes per miR but shuffled the assigned genes randomly to
each miR. The analysis result showed that when miRNA-TF
works cooperatively, TF tends to be regulated by miRNA or
TF regulates the miRNA forming feed-forward loops.

Sun et al. [17] identified TF-miRNA regulatory networks
consisting of 3-node FFL(feed-forward network) and 4-node
FFLs in glioblastoma (GBM). First, GBM related genes and

GBM related miRNAs from previous studies were collected.
Human TFs were extracted from TRANSFAC. Then Tar-
getScan was used for finding miRNA-TF/gene repression,
and MATCHTM was used for TF-gene/miRNA interaction.
Co-regulated relationship among genes were predicted using
the ARACNE software. The process collected TF-miRNA
pairs that cooperatively regulate the same target genes us-
ing a cumulative hypergeometric test in a similar fashion to
the method used in R. shalgi et. al. [15]. Based on the
false discover rate, co-regulating pairs were further filtered
out. The proposed method was able to find GBM specific
network components.

The techniques that we surveyed so far built computational
frameworks by utilizing existing tools as components. Zacher
et al. [19] developed a joint Bayesian inference approach. In-
dicator variables are used for MiRNA functional activities
(S) and TF functional activities (T ). MiRNA functional
activities influence miRNA expression and the mRNA ex-
pression. TF functional activities also influence mRNA ex-
pression in the constructed model. Gene expression levels
are approximated by a linear combination of miRNA and
TF activities as an equation below:

ojlc|S, T, bj , ω, v2j N(bj+
∑

k∈miRNA(j)

skcωkj+
∑

k∈TF (j)

tkcωkj , v
2
j )

where ojlc is expression for gene j in l-th replicate of experi-
mental condition c, ωkj are relative influences of miRNA and
TF regulators, bj are reference expression level of mRNA j,
S and T are functional activities of miRNA and TF. The
limma algorithm and MCMC sampling were used to esti-
mate the parameters w, S, T . This is a comprehensive mod-
eling technique that considered expression profiles of both
TF and miRNA. However, the proposed model did not con-
sider the fact that miRNAs can repress TFs or TFs can
influence miRNAs.

5. DISCUSSION
We reviewed the recent development in constructing regula-
tory networks of miRNA and TF. By nature, miRNA and
TF are hubs that regulate up to hundreds of genes, thus they
are very important for the correct inference of biological net-
works. We categorized computational techniques in three
groups: TF-involved networks, miRNA-involved networks,
and TF-miRNA integrated networks. Although there have
been many successful studies for constructing networks us-
ing omics data, techniques for inferring regulatory networks
needs much more efforts. First more accurate methods for
component tools need to be developed. Examples include
methods for more accurate miRNA target or methods for
TF target prediction. Second these component tools or tech-
niques needs to be incorporated into coherent computational
models, e.g. a joint Bayesian inference approach by Zacher
et al. [19].
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ABSTRACT 
A plethora of biologically useful information lies obscured in the 
genomes of organisms. Encoded within the genome of an 
organism is the information about its evolutionary history. 
Evolutionary signals are scattered throughout the genome. 
Bioinformatics approaches are frequently invoked to deconstruct 
the evolutionary patterns underlying genomes, which are difficult 
to decipher using traditional laboratory experiments. However, 
interpreting constantly evolving genomes is a non-trivial task for 
bioinformaticians. Processes such as mutations, recombinations, 
insertions and deletions make genomes not only heterogeneous 
and difficult to decipher but also renders direct sequence 
comparison less effective. Here we present a brief overview of the 
sequence comparison methods with a focus on recently proposed 
alignment-free sequence comparison methods based on Shannon 
information entropy. Many of these sequence comparison 
methods have been adapted to construct phylogenetic trees to 
infer relationships among organisms.  

General Terms 
Algorithms, Measurement, Performance, Design, Reliability, 
Verification. 

Keywords 
Genome comparison, Sequence alignment, Shannon entropy, 
Segmentation, Clustering  

1. INTRODUCTION 
Evolution has always intrigued humans. Early approaches of 
studying evolution were based on fossil study and other 
palaeontological methods. Developments in the field of molecular 
biology, especially DNA sequencing, led to methods based on 
comparing DNA and protein sequences for studying the 
relatedness between the DNA sequence and thus the organisms. 

Phylogenetic trees constructed using simple alignment methods 
were used to infer evolutionary relationships among organisms. 
Phylogenetic trees are used in diverse fields such as systems 
biology, molecular biology, Darwinian medicine and ecology. 
Often such studies have helped address disease problems, e.g.,    
phylogenetic trees of bacteria have advanced our understanding of 
the spread of antibiotic resistance patterns and the emergence of 
virulence.  

With the advent of high throughput and next generation 
sequencing technologies, we now have access to complete 
genomes of over 4000 prokaryotes and over 180 eukaryotes 
(http://www.genomesonline.org). Such vast amount of genomic 
data calls for development of robust bioinformatics approaches to 
studying evolution via inferring phylogeny relationships among 
organisms. There are broadly two approaches used for comparing 
DNA sequences- alignment based sequence comparison and 
alignment-free sequence comparison, which we discuss briefly in 
the next sections.   
2. ALIGNMENT BASED SEQUENCE COMPARISON 
 

Sequence alignment is the most common approach used for 
comparing sequences. In pairwise sequence alignment, an optimal 
alignment between two given sequences is searched for by 
maximizing a scoring function which is essentially the sum of the 
residue to residue alignment scores between the sequences. 
Dynamic programming methods were developed for the pairwise 
global alignment and for the local alignment between sequences. 
The former, the Needleman-Wunsch algorithm [10], aligns two 
sequences end to end, that is, the full span of the sequences are 
aligned against each other, while the latter, the Smith-Waterman 
algorithm [16], searches for best aligned motif (short conserved 
regions) in the alignment. Heuristic approaches for local sequence 
alignment were developed later for fast and efficient alignment of 
long biological sequences. Among these, FASTA [11] and 
BLAST [1] are the most frequently used heuristic algorithms. The 
visualization techniques such as Dot matrix were developed for 
visualizing the alignment between two sequences; this is among 
the oldest approaches for sequence comparison, first used by 
Gibbs and McIntyre in 1970. Biological sequences come in 
family; homologous sequences in a family share the common 
ancestry and often have similar functions. Pairwise alignment 
methods are limited in their ability to detect members of a 
sequence family. To circumvent these limitations and to detect 
remote homologs, multiple sequence alignment methods were 

 



developed. The progressive alignment methods first align the 
most closely related pair of sequences and then the next most 
similar sequence to this pair is aligned and the process is repeated 
iteratively to build a multiple sequence alignment (also sometimes 
referred to as ‘profile’). CLUSTALW [17] is one of the most 
popular tools used for multiple sequence alignment. Multiple 
sequence alignment is a precursor to phylogenetic tree 
construction. Based on the alignment score between sequences in 
a profile, a distance matrix is created and a phylogeny tree is 
constructed using the distance matrix. Evolutionary relationships 
are thus inferred from relative positions of sequences in a 
phylogenetic tree.  

Genome wide sequence alignment is a huge computational 
burden. Often the organismal relationships are inferred by 
constructing trees using highly conserved nucleotide sequences of 
RNA genes or the conserved sequences of proteins. The problem 
with using only conserved gene or protein sequences is that the 
evolutionary signals from rest of the genome are ignored. Since 
evolutionary signals are dispersed throughout the genome and not 
just restricted to a few genes, ignoring these signals may have 
confounding implications. In fact, trees made using conserved 
RNA or protein sequences have been shown to contradict each 
other. Further, most alignment methods do not account for long 
range interactions within genomes. Moreover, natural 
evolutionary processes like recombinations, mutations, deletions, 
insertions, rearrangements, etc., make direct alignment between 
sequences difficult, especially when such changes happen 
frequently leading to fast evolving genomes with little 
evolutionary signals for a reliable sequence alignment. In general, 
sequence alignment method works best when the sequences being 
compared share high homology. Therefore, there is a great need 
of methods that can adequately account for evolutionary signals 
underlying the genomes of organisms. 
3. ALIGNMENT-FREE SEQUENCE COMPARISON 

Alignment-free approaches are especially useful if the sequences 
do not share high homology or are rapidly accumulating changes 
thus obfuscating the evolutionary signals. Frequent 
rearrangements, in particular, disrupt the sequence contiguity and 
thus render such sequences unalignable in order to assess their 
common ancestry. To circumvent the limitations of alignment 
based methods, several approaches that do not require alignment 
for sequence comparison have been proposed. These so called 
alignment-free methods are based on k-mer frequency for 
computing the similarity (or dissimilarity) score between the 
sequences. The goal of such methods is to assess the divergence 
between two sequences in terms of difference in the frequency 
distributions of k-mers in the sequences. The frequently used 
distance measures to assess the sequence divergence include 
Euclidean distance [2], d2 distance [18], covariance or correlation 
function [12], Mahalanobis distance [21], Kullback-Leibler 
divergence [22] and Kolmogorov complexity metric [7]. In a 
different approach for alignment-free sequence comparison, 
methods based on substrings [5, 19] have been used. The average 
common substring (ACS) method by Ulitsky et al [19] calculates 
average length of maximum common substrings for every site of 
each sequence and then pairwise genome sequence distance is 
calculated [19]. B. Haubold et al [5] used the shortest unique 
substrings in a set of sequences being studied for sequence 
comparison. Recently, J. Cheng et al [6] have built a multi-
methods web server for alignment-free genome phylogeny, which 
can implement 12 popular alignment-free methods in a user 

friendly web platform. We refer the readers to Vinga and Almeida 
[20] for a comprehensive review of some of the alignment free 
methods discussed above. 
 
Sims et al [15] proposed a feature frequency profile (FFP) 
method, a method based on k-mer frequency approach, which was 
shown to outperform other methods including the average 
common substring and Gencompress [3] methods. In this method, 
the frequencies of all possible features (the k-mers) of size k are 
computed to make a feature frequency profile. The total number 
of possible features will be 4k in DNA sequence comparison. The 
difference between two genomic sequences, quantified in terms of 
difference in their k-mer compositional biases, was computed 
using Shannon information entropy based measure (Eqn. 1 in 
Section 4).  The most important contribution of this method, as 
noted by the authors, is obtaining the optimal k-mer size to be 
used for sequence comparison. The lower limit of the k-mer can 
be empirically obtained, whereas upper limit of k-mer is 
calculated based on cumulative relative entropy. In order to infer 
organismal relationships, the information-entropic measure, 
namely, the Jensen-Shannon divergence (Eqn. 1), was used to 
compute the distance between the genome sequences of 
organisms and then a phylogenetic tree was constructed using this 
distance matrix.  

 
The performance of FFP method and other k-mer frequency based 
methods for alignment-free sequence comparison depends on the 
k-mer size [15]. While longer k-mers carry more information and 
therefore confer greater predictive power to the methods, it is, 
however, not practical to use longer k-mers if the sequences under 
comparison are not sufficiently long enough. In contrast, shorter 
k-mers provide reliable statistics, however, this may represent the 
inherent stochastic nature of genomes rather than having any 
biological or phylogenetic meaning. 
 
Genomes are inherently heterogeneous. Bacterial genomes are 
chimeras of genes with different ancestry. Genomic mosaicism 
also arises when different segments of a genome are subject to 
different evolutionary pressures. All alignment-free methods 
including the FFP method represent a genome sequence as a k-
mer frequency distribution, thus ignoring the inherent genomic 
mosaicism that requires multiple k-mer frequency distributions to 
represent uniquely distinct sequence classes within a mosaic 
genome. Methods that use a single oligomer distribution as the 
representation of a genome can yield confounding results when 
comparing two or more mosaic genomes. A single oligomer 
distribution averages out evolutionary signal from entire genome, 
disregarding the heterogeneity of the genome [13]. To overcome 
this problem, Azad and Li [13], first deconstructed the 
intragenomic heterogeneity using Shannon information entropy 
based recursive segmentation and clustering method, and then 
compared the compositionally homogenous regions from the 
genomes of interest. 
 

4. RECURSIVE SEGMENTATION AND 
AGGLOMERATIVE CLUSTERING 

 

An integrative framework of recursive segmentation and 
agglomerative clustering was developed recently to deconstruct 
the complex heterogeneities within genomic data [13]. Recursive 
segmentation for DNA sequence analysis has a history of over a 
decade [4,8].  The recursive segmentation and agglomerative 



clustering method interprets genomic data at the intrusive level of 
complexities using Shannon entropy [14]. This method uses 
Jensen-Shannon (JS) divergence measure for assessing divergence 
or dissimilarity between two sequences. The Jensen-Shannon 
divergence between two sequences S1 and S2 can be measured 
using the following formula [9], 

 
D (S1, S2) = H(S) − π1 H(S1) – π2 H(S2).                                (1) 

 
Here, Shannon entropy H for a sequence is defined as H = −∑x 
p(x) log2p(x), where p(x) is the probability of (oligo)nucleotide 
(residue for protein sequences) x estimated from the count of x in 
the sequence. S is the concatenation S1 and S2, and πi is the weight 
factor proportional to the length of Si, ∑i πi = 1. The entropy 
function measures the information stored in a sequence.  
 
The genome complexity is decomposed successively by 
performing a binary segmentation recursively until none of the 
sequence segments or regions can be divided further [9] using 
following steps: (i) For a sequence S, the difference between 
sequence segments left and right to each sequence position in S is 
calculated using Jensen-Shannon divergence measure. (ii) The 
position of maximum divergence between the left and right 
sequence segments is located. (iii) The sequence is segmented at 
this position to get two segments, S1 and S2 provided the 
segmentation is deemed statistically significant. (iv)The 
aforementioned procedure is repeated for segments S1 and S2 
recursively until none of the resulting sequence segments can be 
divided further. (v) These compositionally homogeneous 
sequence segments are now considered as distinct clusters, each 
segment assigned to a distinct cluster. In this step, similar 
contiguous segment clusters are identified and grouped together 
(vi) These segment clusters are the seed clusters for the next step 
of the clustering procedure. The grouping of similar clusters is 
followed recursively until the difference between any two clusters 
becomes significantly large. This last step clusters even non-
contiguous segments and thus account for long range interactions 
or relationships between different regions in a genome. 
 
This recursive segmentation procedure can be accomplished 
within a hypothesis-testing framework [4] or a model-selection 
framework [8]. Azad and Li [13] allowed hyper-segmentation in 
the hypothesis testing framework. This helped to increase the 
sensitivity of the method in identifying the break points or 
segment boundaries. However, hyper-segmentation may cause 
fragmentation of biologically important domains. To reestablish 
the segmental structure, segmentation was followed by clustering 
(step v above) at a relaxed clustering stringency.  
 
To assess the divergence between genomes, Genome Wide 
Distance (GWD) was calculated using following formula:  
   
 
 
 
 
Here, D(Gi

1, Gj
2) is the Jensen-Shannon divergence between 

clusters i and j of genomes G1 and G2. M and N are number of 
clusters for genome G1 and G2 respectively. 
This method was reported to perform better than the FFP method 
for comparing genomes [13]. This validated the hypothesis that 
relationships among organisms could be better explained by first 

decomposing their genome complexities and then comparing 
compositionally distinct components of their genomes. In the 
recursive segmentation and agglomerative clustering approach, 
the global genomic heterogeneity is deciphered first; the earlier 
obtained split points thus guide the next rounds of segmentation to 
decipher the local heterogeneities and in this process, eventually, 
the distinct evolutionary signals encoded in biological domains 
within a genome are deciphered. This method thus captures the 
evolutionary patterns within genomes reflecting disparate 
evolutionary trajectories, thus helping in deducing the 
evolutionary relationships among organisms.  

 
This method was used to address several other pressing issues in 
biology, such as, identification of alien genes in bacterial 
genomes and detection of copy number variations in cancer 
genomes [13]. In future, this method can be adapted to detect 
other biologically important features such as isochores or the 
origin and terminus of replication.  

 
5. CONCLUSIONS 

The vast number of methods developed for comparing genome 
sequences highlights the significance of deducing reliable 
phylogenetic relationships. Traditional sequence alignment 
methods though reliable for sequences which are highly related  
or share high homology often prove to be deficient when 
comparing rapidly evolving sequences.  
 
Alignment-free approaches have made significant progress since 
it was first used by Blaisdell [2]. Many recent methods for 
sequence comparison have used alignment-free approach. The 
alignment-free approach allows computing distances between 
large genomes in relatively less time. Alignment-free methods are 
more robust for comparing highly evolved sequences, sequences 
which have undergone changes at multiple loci in a chromosome, 
and even shorter sequences.  
 
The advantage of using recursive segmentation and agglomerative 
clustering method is that it first decomposes the complexities of 
heterogeneous genomes and then compares the homogeneous 
parts of the genomes, thus providing a better comparison tool for 
elucidating organismal relationships. This method can be used in 
concert with alignment based methods to construct robust 
phylogenetic trees.  
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