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ABSTRACT
Translational bioinformatics (TBI) is an emerging 
interdisciplinary field, which aims to bridge the gap between 
molecular world and clinical world. Translational bioinformatics 
employs data mining and machine learning techniques to 
analyze increasingly massive biomedical data and generate 
knowledge for clinical applications. One of the major challenges 
in TBI is to integrate multi-dimensional heterogeneous 
biomedical information sources in order to elucidate new 
biomedical knowledge. The integrative methodologies that 
are used to interpret these data require expertise in different 
disciplines, such as biology, medicine, mathematics, statistics 
and bioinformatics, and they pose great interdisciplinary 
challenges. Bioinformatics, system biology and network science 
together with knowledge engineering and reverse engineering 
have great potential to push TBI forward. In this paper, we 
introduce the background of TBI and the great variety of 
biomedical data, discuss the computational tools for integrative 
analyses, and summarize several crucial interdisciplinary 
challenges and future directions in TBI. 

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—

Data Mining; J.3 [Life and Medical Sciences]: Health.

General Terms
Algorithms, Management, Theory.

Keywords
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INTRODUCTION
The accumulation of enormous quantities of molecular data 
and clinical data has led to the emergence of ‘translational 
bioinformatics’ (TBI), an inter-disciplinary field of study that 
focuses on linking molecular entities and clinical entities in 
order to better transform scientific discoveries into clinical 
applications. The American Medical Informatics Association 
defines translational bioinformatics as follows: 
Translational bioinformatics is the development of 
storage, analytic, and interpretive methods to optimize the 
transformation of increasingly voluminous biomedical data, 
and genomic data, into proactive, preventive, predictive and 
participatory health. Translational bioinformatics includes 
research on the development of novel techniques for the 
integration of biological and clinical data and the evolution 
of clinical informatics methodology to encompass biological 

observations. The end product of TBI is newly found knowledge 
from these integrative efforts that can be disseminated to 
a variety of stakeholders, including biomedical scientists, 
clinicians and patients.
The critical areas to be addressed in translational bioinformatics 
include the following categories [16]: 1) The management of 
multi-dimensional and heterogeneous molecular and clinical 
data sets; 2) The applications of knowledge-based systems 
and intelligent agents to enable high-throughput hypotheses 
generation and testing; 3) The facility of data-analytic pipelines 
in in-silicon research programs; and 4) The dissemination 
of data, information and knowledge generated during the 
translational cycle. 
Though various informatics tools have been developed and 
great progress has been made in the abovementioned areas, 
there are still enormous challenges to understand the 
sophisticated mechanisms underlying complex biological 
systems and to optimize the transformation of the exploding 
biomedical data and information sources into significant clinical 
benefits. First, biological systems are inherently complex with 
numerous uncontrollable and unobservable variables, which 
pose extreme challenges to have a holistic view of all biological 
activities. To address this issue, systems biology, a biology-
based inter-disciplinary field of study that focuses on complex 
interactions within biological systems, using a holistic approach 
to biological and biomedical research, has aroused great 
interests in recent years. Second, due to lack of standards and 
control of data quality in biological experiments as well as 
clinical trials, it’s very difficult to comprehensively reuse the 
data collected in various contexts. Third, though increasingly 
massive biomedical data is linked together, usually through 
relational databases, e.g., NCBI, it’s far more complex to 
effectively mine the data and extract useful information based 
on multiple heterogeneous datasets. Finally, though great efforts 
have been made, generally speaking, biomedical data, 
information, and knowledge are still scattered around or loosely 
connected. It becomes increasingly urgent to develop a unified 
framework which can automatically and comprehensively mine 
heterogeneous biomedical information sources. Thus, 
integrative analysis of biomedical data has been and is still 
intensively studied by researchers. 
This paper aims to discuss several crucial challenges and outline 
a number of future directions in translational bioinformatics. 
The rest of the paper is organized as follows: we first introduce 
the various biomedical information sources and applications 
in Section 2. Then we discuss various integrative analysis 
approaches in translational bioinformatics in Section 3. 
Translational bioinformatics is inherently interdisciplinary. In 



Section 4, we will discuss several interdisciplinary challenges 
and propose several corresponding crucial scientific inquiries in 
TBI. Finally we give a brief conclusion in Section 5.

EXPLODING BIOMEDICAL 
INFORMATION SOURCES
First, let’s get a glimpse of the rich variety of biomedical data, 
including both molecular and clinical data. In the molecular 
world, we study molecules, including big molecules, such 
as DNAs, RNAs and proteins, and small molecules, such as 
amino acids, lipids, and sugars [1]. Instead of studying them in 
isolation, we want to figure out the molecular mechanisms of 
biological activities, including metabolites, cellular organization 
and communication, and various kinds of biological processes. 
This makes things quite complicated. Even though the 
advancements of biotechnology enable us to make various 
molecular measurements in an unprecedented way, we are far 
from getting a comprehensive understanding of the sophisticated 
mechanisms of molecular world in which trillions of molecules 
work together to fulfil numerous intertwined biological 
processes. 
In the clinical world, we study diseases, drugs, patients, 
symptoms, clinical laboratory measurements, clinical images, 
and electronic health records (EHRs) [1]. However, the 
molecular world and clinical world are never separable. There 
are causality links between the two. In fact, translational 
bioinformatics (TBI) emerges to bring the gap between both 
molecular and clinical world. Great efforts have been made to 
integrate clinical and genomic data [21]. Table 1 lists a number 
of biomedical data and information sources.
DNA and RNA: 1) Nucleotide sequences and map data from the 
whole genomes of over 1000 organisms, public available from 
the International Nucleotide Sequence Database Collaboration; 
2) A collection of curated, non-redundant genomic DNA 
and transcript (RNA), which provides a stable reference for 
genome annotation, gene identification and characterization, 
mutation and polymorphism analysis, expression studies, and 
comparative analyses, retrievable from Reference Sequence 
(RefSeq); 3) Single nucleotide variations, micro-satellites, 
small-scale insertions and deletions, including population-
specific frequency and genotype data, experimental conditions, 
molecular context, and mapping information for both neutral 
variations and clinical mutations, retrievable from Database of 
Short Genetic Variations (dbSNP); 4) Large scale of genomic 
variation, including large insertions, deletions, translocations 
and inversions, public available from Database of Genomic 
Structural Variation (dbVar); and 5) A collection of functional 
genomics, comparative genomics and genetic studies and 
their resulting datasets, retrievable from BioProject (formerly 
Genome Project). For a specific topic, there might be hundreds 
or thousands of studies with datasets public available. However, 
inconsistencies might exist [10] in different studies due to 
lack of standards, inconsistent annotations, experimental and 
environmental factors, the varied nature of many molecular 
measurements, such as gene expression profiles, etc. One of 
the major research inquires in TBI is how to integrate all these 
scatted research results and datasets, and generate a consistent 
data and knowledge repository. 
Protein: 1) Protein sequence records from a variety of sources, 
including PDB, RefSeq, PRF, etc; 2) Known 3-dimensional 
protein structures; 3) Sequence alignments and profiles 
representing protein domains conserved in molecular evolution; 

Table 1. List of Biomedical Information Sources

Data Types Contents Techniques Databases

Sequences Nucleotide, 
peptide, etc.

Sequential 
analysis, 
typical 

software: 
BLAST

GenBank, 
RefSeq, 

PDB, etc.

Arrays Gene 
expression

Statistics, 
Network 
analysis

GEO, Gene, 
BioProject

Metadata

Annotation 
and mapping 
information 
about the 
sequences

Text mining, 
integrative 
methods

dbSNP, 
dbVar, 

RefSeq, etc.

Unstructured 
Texts

Clinical 
records 
(EHRs), 
literature

Text Mining, 
NLP, 

integrative 
analysis

PubMed, 
(EHRs are 

usually 
not public 
available)

Structured 
Texts

Knowledge

Gene 
ontologies, 
biological 
models, 
research 
finding, etc.

NLP, 
knowledge 

driven 
models

BioPortal 
(NCBO), 

BioProject, 
BioSystem, 

etc.

and 4) Protein clusters, a collection of related protein sequences, 
including annotation information, domains and structures.
Gene and Gene Expression: 1) Gene information, including 
nomenclature, sequences, chromosomal localization, variation 
details, expression reports, homologs, protein domain content, 
gene products and their attributes, associated markers, 
phenotypes, gene interactions, etc; 2) Gene expression and 
molecular abundance profiles; and 3) The relationships between 
human variations and observed health status with supporting 
evidence. 
Genotype-Phenotype Mapping: 1) The associations between 
genotype and phenotype from the results of studies which 
investigate the interaction of genotype and phenotype. These 
studies include Genome Wide Association Study (GWAS), 
medical resequencing, and so on. Typical public databases 
include dbGaP; 2) The relationships between human variations 
and observed health status with supporting evidence, retrievable 
from ClinVar; and 3) Human genes and genetic disorders, 
retrievable from OMIM. 
General Clinical Data: 1) Electronic Health Records (EHRs) 
could be used to deprive high quality phenotypic information 
[7]. One of TBI’s inquiries is how to link EHRs with bio-
bank in order to enhance clinical decision support systems. 
However, there are still a lot of challenges due to lack of 
standards, data qualities, technology barriers and privacy issues. 
In the past few years, Personal Health Records (PHRs) are 
emerging. Each individual’s EHRs can be collected through 
one’s life, which constitute Personal Health Records (PHRs). 
Both EHRs and PHRs contains temporal information, which 
can be used for temporal data mining [20]. PHRs will combine 
traditional EHRs and genomic data, which will maintain much 
more comprehensive information of individuals and will be 
of great value to multiple stakeholders in health care systems. 
However, we need to rebuild the existing IT infrastructure 



to support the transformation from EHRs to PHRs. Besides 
technology issues, privacy, ethic and legal concerns should also 
be taken into consideration; 2) Clinical reports, drug responses, 
biomedical images and other lab measurements, could be useful 
for pharmacogenetics when linking to genomic information; and 
3) Results and datasets from numerous clinical trials could be 
grouped together so that novel information and knowledge could 
be discovered. 
Biological Processes:  Existing knowledge of high-level 
functions and utilities of the biological systems, such as 
molecular pathways, functional hierarchies, etc. Most of this 
information is manually curated and deprived from raw data 
described above.
Literature and Knowledge Repositories: 1) Every year 
voluminous literature get published. For instance, more than 
30, 000 articles on “biomedical” topic published in 2013 were 
retrievable from Web of Science. 2) Great efforts have been 
made to link multiple data sources by using annotations and 
ontologies [15; 19; 22].
Almost all kinds of biomedical data related to a specific topic, 
for instance, a specific disease, has some relationships, either 
known or unknown to us. All the data are interconnected and 
coupled together. For example, once an identifier is assigned 
to the concept of a gene, multiple databases connected to that 
concept need to be updated, including databases on genes 
and gene products, pathways involving gene products, gene 
variations and corresponding phenotypes, literature, annotation 
and ontologies. 
In general, biomedical information sources can be further 
divided into biomedical data and biomedical knowledge. For 
example, the nucleotide sequences and the 3-Dimensional 
structures of protein belong to the category of biomedical 
data, which contain the factual information as measurements 
or statistics used as a basis for reasoning, discussing, or 
calculation; gene ontologies and pathways can be classified 
as biomedical knowledge which is induced from biomedical 
data and formerly existing knowledge. There is great potential 
to combine data-driven and knowledge-driven approaches to 
generate new knowledge [2]. 
The major inquiry of TBI is how to incorporate various kinds 
of biomedical data and knowledge sources in a systematic way 
such that new knowledge can be generated which will directly 
benefit clinical practice. 

INTEGRATIVE ANALYSES IN 
TRANSLATIONAL BIOINFORMATICS
With exploding biomedical data and knowledge sources, it 
becomes increasingly urgent to develop systematic frameworks 
to integrate multi-dimensional information sources. Numerous 
computational tools have been developed for integrative 
analyses in recent years. Yet they are far from perfection with 
various restrictions. Knowledge engineering in TBI is an 
emerging field which has aroused great interests in biomedical 
community.

Computational Tools for Integrative 
Analyses
There are three broad objectives of integrative analysis [14]: The 
first objective is to understand molecular behaviors, mechanisms 
and relationships between and within the different types of 
molecular structures, including associations between these 

and various phenotypes, such as clinical outcomes, pathways, 
interactions, etc. The second objective is to understand the 
taxonomy of diseases, thereby classifying individuals into latent 
classes of disease subtype. The third objective is to predict an 
outcome or phenotype for the prospective patients. [14] gives a 
detailed review of bioinformatics tools for integrative analyses 
in cancer, including sequential analysis, latent variable models, 
penalized likelihood, gene set analysis, pair-wise correlation 
methods, network-based analysis, Bayesian approaches, etc. 
Furthermore, [8] reviews cancer genomic software and the 
insights that have been gained from their applications. The 
bioinformatics tools and software for cancer can easily be 
extended to solve problems in other complex diseases.

Among many existing methods, integrative genomics is based 
on the fundamental principle that any biological mechanism 
builds upon multiple molecular phenomena, and only through 
the understanding of the interplay within and between different 
layers of genomic structures can one attempt to fully understand 
phenotypic traits [14]. Therefore, principles of integrative 
genomics are based on the study of molecular events at different 
levels and on the attempt to integrate their effects in a functional 
or causal framework. To infer causal relationships instead 
of mere statistical correlations and associations is the future 
direction of integrative analysis. 
In general, bioinformatics tools for integrative analyses can be 
classified as statistical methods, machine learning approaches 
and the hybrid of the two, including Bayesian approaches, 
probabilistic mixture models, maximum likelihood estimation, 
probabilistic graphical models, diffusion models, network 
analysis, etc. Various computational tools have been developed 
for integrative data analysis pipelines from variant detection 
to annotation and interpretation [8]. [9] discusses approaches 
that effectively weight and integrate hundreds of heterogeneous 
datasets into a regularized Bayesian integration system, and 
provides maps of function activities and interaction networks in 
more than 200 areas of human cellular biology.

Biomedical research has become a data intensive field, which 
enables data-driven approaches and requires sophisticated 
data mining and data and knowledge integration methods. 
However, most current data-driven and integrative approaches 
are majorly based on statistical metrics for the evaluations of 
data mining models. Due to lack of rigorous validations and 
systematic interpretation, there are a number of incidental 
findings and inconsistencies [10] in this field. What’s more, it’s 
difficult to rigorously evaluate numerous computational tools 
abovementioned.

Data and Knowledge Engineering
With the “omics” data explosion, biomedical sciences become 
data-intensive field, where data-driven approaches together 
with knowledge-driven approaches show great potential in 
knowledge engineering. While knowledge-driven approaches 
generate hypotheses from domain knowledge, data-driven 
approaches generate hypotheses by using computational 
methods with inductive learning. 
Knowledge engineering deals with knowledge representation, 
automatic reasoning, statistical and mathematical methods, 
cognitive science and so on, and can contribute to clinical 
decision making. [16] provides a good review of knowledge 
engineering in translational bioinformatics. Biomedical data and 
knowledge sources have multiple formats, include numerical 



values, images, text, data streams, event logs, etc. Text mining, 
temporal data mining, workflow mining, network approaches 
have been and are still been extensively studied to mine these 
data sources. Databases, annotation systems, and biomedical 
ontologies should be combined together. Intelligent data 
analysis [3] has provided a way. Great efforts have been made 
to integrate domain knowledge and data sources using ontology 
and knowledge repositories. 
Recent years have witnessed great achievements in 
technological engineering, such as electrical engineering and 
software engineering. However, knowledge engineering still 
lacks breakthrough. In the future, biomedical and translational 
sciences could have great potential to drive the development 
of knowledge engineering and vice versa. In the next section 
we will also discuss the significant potential of using reverse 
engineering to study complex biological systems. 

INTERDISCIPLINARY CHALLENGES 
AND FUTURE DIRECTIONS
Translational bioinformatics deals with biology, medicine, 
mathematics, bioinformatics, clinical science, and so on, and is 
inherently interdisciplinary. There are great challenges as well 
as opportunities in multiple areas to push TBI forward. 

Mathematical Foundations and Information 
Theory
Though advanced biotechnology enables us to accumulate 
terabytes and even petabytes of biomedical data, we cannot 
neglect the fact that the current accumulated data and data 
analysis is not sufficient to understand the complex biological 
systems. What’s more, the mathematical foundation should 
be further enhanced for information extraction and knowledge 
discovery in biomedical research.
In general, the challenge comes with the distributed nature 
of data and knowledge sources [16]. Though we try to make 
a huge repository to store and manage all the data, we may 
never be able to store the data in a single repository with the 
dramatic increase of data every day. Another issue deals with 
data quality. Even though our technology is much better than 
before, we cannot guarantee that the measurements we made are 
accurate enough, not to say infinitely precise. The noises in our 
measurements make it hard to extract true information.
For a specific topic, we may need to use a corresponding 
dataset. However, we are even not sure which data should 
be used. Even worse, we don’t know what kind of data and 
measurements we should collect. Even though we know certain 
variables are crucial, we might not be able to measure them 
correctly due to lack of standards, environmental factors and 
technological limitations.
Here comes a big question: To what extent can we extract 
information and discover knowledge from incomplete and 
inaccurate measurements? For example, each human genome 
has three billion base pairs nucleotides, yet our datasets at most 
consist of tens of thousands of samples (patients and controls). 
Since the genomic sequence data is highly “redundant”, how 
can we decipher the information from the highly noisy big 
data but only a few samples? Great efforts have been made in 
mathematics [4; 5]. However, these results are built upon some 
restrictive constraints and far from solving the challenges in 
biomedical research. 

Systems Biology and Network Science

A key goal of biomedical research is to elucidate the complex 
network of gene interactions underlying complex traits such as 
common human diseases. Systems biology approaches which 
integrate multiple information sources in a systematic way 
are gaining great popularity. For example, [18] introduced 
a multistep procedure for identifying potential key drivers 
of complex traits that integrates DNA-variation and gene-
expression data with other complex trait data. Ordering gene 
expression traits relative to one another and relative to other 
complex traits is achieved by systematically testing whether 
variations in DNA that lead to variations in relative transcript 
abundances statistically support an independent, causative 
or reactive function relative to the complex traits under 
consideration [18]. 
Still our understanding of common human diseases and how 
best to treat them is hampered by the complexity of the human 
system in which they are manifested. Unlike simple Mendelian 
disorders, common human diseases often originate from a 
more complex interplay between constellations of changes 
in DNA and a broad range of factors such as diet, age and 
exposure to environmental toxins [17]. For instance, [17] 
proposed to link molecular states to physiological ones through 
the reverse engineering of molecular networks that sense 
DNA and environmental perturbations and drive variations in 
physiological states associated with diseases. 
To understand biology at the system level, we must examine 
the structure and dynamics of cellular and organismal function, 
rather than the characteristics of isolated parts of a cell or 
organism [12]. Properties of systems, such as robustness, 
emerge as central issues, and understanding these properties 
may have an impact on the future of medicine. Systems biology 
and network science have great potential to play a key role 
in understanding complex biological systems and boosting 
translational science.

Reverse Engineering and Knowledge 
Engineering
Advanced technologies and biology have extremely different 
physical implementations, but they are far more alike in 
system-level organization than is widely appreciated [6]. In 
fact the principles and techniques widely used in engineering 
can be applied to computational systems biology [11]. Both 
biology and engineering are driven by demand for robustness to 
uncertain environments, and often deal with noisy measurements 
and incomplete information. To address these issues, modular 
architectures are ubiquitous in both domains that are composed 
of elaborate hierarchies of protocols and layers of feedback 
regulation and thus can significantly improve the system 
robustness. Robustness, modularity, feedback, and fragility 
are common characteristics of both engineering and biological 
complexities [13].
Brute-force computational approaches are hopeless for complex 
systems involving protocols and feedback. The success of 
systems biology will certainly require modeling and simulation 
tools from engineering, where great achievements have been 
made to address the challenges of uncertainties and robustness. 
Researchers in robust control theory, dynamic systems, and 
related areas have been vigorously pursuing mathematics and 
software tools to address these issues, which could also apply 
to complex biological systems [6], though scaling to deal with 
large biological networks will still be a major challenge. 



Another big idea to boost biomedical research is knowledge 
engineering. As discussed in Section 3, knowledge engineering 
has great potential to integrate data and knowledge sources in an 
automatic and systematic way. 

CONCLUSION
Translational bioinformatics represents a natural framework 
to properly and effectively apply data mining and machine 
learning techniques across molecular and clinical realms in the 
clinical decision-making context. The increasing share of data 
and methods in TBI has brought great opportunities as well as 
new tough challenges. One of the major challenges facing TBI 
community is to build systematic integrative analysis framework 
that can take advantage of multi-dimensional data and 
incorporate various information and knowledge sources. Data-
driven and knowledge-driven models have been proposed to 
integrate multiple “omics” data as well as biomedical knowledge 
sources. However, rigorous validation methodologies are still 
necessary to evaluate these computational models in both 
scientific and clinical contexts. System biology and knowledge 
engineering could have great potential to push TBI forward 
and ultimately boost health care and improve people’s life 
quality.  As we are moving towards an era in which the amount 
of data produced every year is increas-ing exponentially, the 
TBI community needs to embrace this complexity and find 
new methods of analyzing data, extracting information and 
discovering knowledge.
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“Yes, I did have a band in college, and I still love music,” says Yang,
who now has his own highly-successful computational biology labora-
tory at University of Michigan, Ann Arbor. While most of us are quick
to associate his name with top protein structure prediction servers,
such as I-TASSER and QUARK, not many of us know that Yang’s
first passion was music. “When I was young,” he recalls, “my dream
was to roam around the world with my guitar.” His dream did not last
long, as he made a conscious decision to pursue a graduate degree
after completing his undergraduate studies in physics in China. His

Ph.D. thesis was on the interaction of elementary particles, such as quarks (that explains a lot). He
was awarded the prestigious Humboldt fellowship, which allowed him to study quarks at the Free
University in Berlin for two years.

Yang’s research interests took a sudden, unplanned shift to biology when he read an article by Zhongcan
Ouyang on the shape of membrane vesicles in 1999. He recalls being fascinated by the fact that the
predicted results on the shape of membrane vescicles could be directly confirmed and viewed in the
wet laboratory. That was something he found he had been missing in his previous studies. No one
has ever seen quarks, and their existence can only be indirectly validated through high-energy particle
collisions. The need to connect computation with experiment ultimately drove Yang to Ouyangs lab at
the Chinese Academy of Science, where he spent the two next years on studying the elasticity of RNA
and DNA molecules.

In 2001, Yang joined Jeffrey Skolnick’s laboratory in the University at Buffalo via a recommendation
by Ulrich Hansmann. It was in Skolnick’s lab where Yang started to learn how to fold proteins in
silico. He recalls his time in the lab as the “Golden Age” of his research, as he could concentrate fully
on science without worrying on having to secure funding or preparing lectures and other teaching
materials. In Skolnick’s lab, Yang developed a number of computer algorithms, including TM-score,
TM-align, and SPICKER, which are still widely used in the community for comparing and analyzing
protein structures. The most recognized accomplishment of his time in the Skolnick’s lab is perhaps
his TASSER method, which in essence allows assembling new protein structures from segments cut
from known structures of other proteins. Using TASSER, Yang built the first genome-wide structure
database of G protein-coupled receptors (GPCRs) in the human. This was a marked accomplishment,
as GPCRs are now widely considered to be the most important and prevalent drug targets.

Yang continued his work on protein structure prediction and folding in Skolnick’s lab till 2005. He
then moved to the University of Kansas as an assistant professor. He and his team in Kansas continued
Yang’s journey on protein structure prediction and folding, as Yang fully recognized that his work was
not done. “After more than forty years of effort,” Yang says, “we still have not solved the problem
of protein folding.” In Kansas, Yang extended and improved TASSER to I-TASSER by iterative
structure assembly simulations. He shared I-TASSER with the community through a web interface,
and this resulted in I-TASSER establishing itself as one of the most widely used online structure
prediction services. Since its development, I-TASSER has been consistently ranked as the best server
for structure prediction in the community-wide “Critical Assessment of protein Structure Prediction”
(CASP) experiment since 2006. The server has attracted so far more than 50, 000 registered users, with
hundreds of jobs waiting on the queue on any single day. I recall having sent many of my undergraduate
and graduate students over the years to Yang’s I-TASSER server to complete their homeworks and



their understanding of protein structure prediction. The server capabilities combine an intuitive and
easy-to-use interface with serious algorithmic power and rigorous analysis.

“I-TASSER starts with a technique called threading, which requires the availability of homologous
proteins,” explains Yang. After I-TASSER, Yang wanted to do more and move to the ab-initio folding
territory. To build a protein structure from scratch, Yang and his colleague, Dong Xu, developed a new
algorithm based on “continuous fragment assembly,”’ which Yang named QUARK. There seems to be
a deeper story behind the naming than the subject of Yang’s Ph.D. thesis. Yang explains, “In particle
physics, hadrons, such as protons and neutrons, which account for the majority of the mass of all
materials, are an assembly of quarks.” In Yang’s view, all protein molecules are an ordered reassembly
of atomic building blocks (backbone fragments and side-chains), which is exactly the principle that
QUARK follows in assembling structure models of novel protein sequences. QUARK made a debut
worthy of its name. As soon as it was introduced to the community, QUARK stood out as the top
ab-initio folding algorithm in the 9th and 10th CASP experiments.

In 2009, Yang moved his lab to the University of Michigan in Ann Arbor and joined the Department of
Computational Medicine and Bioinformatics founded by Gil Omenn and Brian Athey. “I love what
I am doing here and enjoy strong support from the department and colleagues,” he says. He notes
that one of the benefits of his new work environment is the ability to always find computational and
experimental collaborators drawn to the same scientific quests as him. That has helped him pursue
many projects and expand them from the silica to the wet laboratory.

“I am excited in particular by two major puzzles that we are now trying to solve in my lab: (1) What we
can tell on a proteins role in cell when we are given the protein structure (mostly by computational
prediction)? (2) How can we do the reverse of protein folding, i.e., design new protein sequences when
given target structures?” Yang got started on the first puzzle by developing COFACTOR and COACH
with his colleagues Ambrish Roy and Jianyi Yang. The programs detect drug- and ligand-binding
partners from predicted structure models of proteins. The algorithms currently ranked at the top in the
community-wide protein function annotation experiments (including CASP and CAMEO). To address
the second second puzzle, Yang and his colleague, David Shultis, built up a new wet laboratory to
crystallize proteins Yang designed in silico. They enjoyed a recent success in redesigning the BIR3
domain of the functional X-linked inhibitor of apoptosis, and the Phox membrane scaffolding domain;
with the latter recently deposited in the Protein Data Bank.

“I consider it my duty to better
serve the scientific community.
If I do not share my inventions,
they are essentially useless.”

Despite the rapid string of successes, Yang does not forget what he
considers his basic duty as a scientist. He and his team maintain a
comprehensive set of web-based services for a variety of projects,
ranging from protein structure prediction, protein function annota-
tion, protein-protein interaction, and protein-ligand docking and drug

screening. “The maintenance of multiple high-quality service systems can be time-consuming but
worthwhile”, Yang adds, “as one of our major goals when designing new algorithms is ultimately to
better serve the scientific community through them.”

Yang on one of his drumming sessions.

“Going back to my first passion,” he says, “I still play guitar and
drum. I play drum at least 20 minutes every day, which helps me
refresh my brain for a while from the crowding world of protein
folding.” He also routinely listens to Jazz. “But playing guitar or
listening to Jazz are more enjoyable at night or during weekends,
when it is quieter,” he adds. Nurturing his first passion seems
to be working for Yang, and, on that note, we have come to a
natural conclusion.
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