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ABSTRACT

Observing the recent progress in Deep Learning, the employment of
AI is surging to accelerate drug discovery and cut R&D costs in the
last few years. However, the success of deep learning is attributed
to large-scale clean high-quality labeled data, which is generally
unavailable in drug discovery practices.

In this paper, we address this issue by proposing an end-to-end
deep learning framework in a semi-supervised learning fashion.
That is said, the proposed deep learning approach can utilize both
labeled and unlabeled data. While labeled data is of very limited
availability, the amount of available unlabeled data is generally
huge. The proposed framework, named as seq3seq fingerprint,
automatically learns a strong representation of each molecule in
an unsupervised way from a huge training data pool containing
a mixture of both unlabeled and labeled molecules. In the mean-
time, the representation is also adjusted to further help predictive
tasks, e.g., acidity, alkalinity or solubility classification. The entire
framework is trained end-to-end and simultaneously learn the rep-
resentation and inference results. Extensive experiments support
the superiority of the proposed framework.
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1 INTRODUCTION

In the past few years, the application of Artificial Intelligence (AI)
technologies in drug discovery has become significant and increas-
ingly popular. Observing the most recent rapid growth of a key
technology in AI, namely deep learning (or deep neural net-

work), the whole industry and academia are looking towards AI to
speed up the drug discovery, cut R&D cost and decrease the failure
rate in potential drug screening trials [6].

However, the previous success of deep learning in multiple ap-
plications, e.g., image understanding [8, 34], medical imaging [16,
23, 36, 40], video understanding [2, 46], bioinformatics [43–45], and
machine translation [19], etc., has implied a reliance on large-scale
high-quality labeled data-sets. The training procedure of those deep-
learning-based state-of-the-art models generally involve millions of
labeled samples. In the meantime, however, for the drug discovery
tasks, the scale of labeled data-set stays around only thousands of
examples due to the insanely high cost of obtaining the clean labeled
data through the biological experiments. The available amount of
the labeled training data is absolutely insufficient to secure the
success of the application of deep learning in the drug discovery
[27]. This huge gap between the requirement and availability of the
labeled data in drug discovery has become a bottleneck of applying
deep learning techniques into drug discovery.

Given the high cost of obtaining sufficient labeled data points, it
seems impractical to increase the labeled data-set scale to a satisfac-
tory level. To address this issue, we propose a semi-supervised deep
learning modeling strategy. In simple terms, the proposed deep



learning framework can learn from both labeled and unlabeled
data, while the unlabeled data is almost infinitely available. For
instance, the ZINC data-set [17] is publicly available and contains
over 35 million unlabeled molecule data. With such scale of data
being used, the deep learning model is expected to be trained with
enough representation power to help the inference task.

In this paper, we propose a semi-supervised data-driven multi-
task deep-learning-based drug discoverymethod, named as seq3seq
fingerprint. The reasons behind this naming are two-fold: 1) this is
the next-generation seq2seq fingerprint [43], whose major up-
grade is that the original two-stage pipeline has been combined into
an multi-task one-stage end-to-end pipeline to ensure much more
decent inference performance; 2) the seq3seq fingerprint frame-
work contains three ends with one input and two outputs while
the seq2seq fingerprint contains two ends with one input and one
output.

To briefly introduce the proposed seq3seq fingerprint framework,
the seq3seq fingerprint network can be considered as a pipeline
with one input and two outputs. The designed neural network can
take the molecule inputs for training,with or without labels. The
input is the raw sequence representation of a molecule, namely
SMILE representation. Examples are referred in Figure 1. The two
outputs will correspond to the two tasks inside this network. The
first one is the self-recovery. The network is expected to be able
to generate a vector representation which is able to be recovered
back to original raw sequence representation. The second task is
the inference whenever the label is available. For instance, it can
be a task to predict the acidity, alkalinity or solubility of a single
molecule. The two tasks are trained within the same network in
an end-to-end fashion. As a result, in a specific inference task, the
vector representation will be able to provide both good recovery
performance and inference performance. Also, the network can be
trained inside a mixture data pool with both labeled and unlabeled
data, which is sufficient enough to ensure the fine training of the
neural network.

The benefits of the seq3seq fingerprint are three folds: 1) the
training phase of seq3seq fingerprint takes both labeled and unla-
beled data into consideration, which is able to provide both strong
vector representation and good inference performance. 2) it is data-
driven, eliminating the reliance on expert’s subjective knowledge.
3) since the unlabeled data is almost unlimited in practice, it will sig-
nificantly complement the sole training with labeled data, ensuring
a final good inference performance.

The technical contributions of this paper are summarized as: 1)
the seq3seq fingerprint method is obviously the first attempt to
utilize both labeled data and unlabeled data for sequence-based
end-to-end deep learning in drug discovery. 2) several important
features are enabled in the seq3seq fingerprint to help inference:

• this is the first end-to-end framework coupling both the
recovery and inference task.

• the proposed framework is general enough to suit different
prediction tasks, e.g., classification, regression, etc.

• it is feasible to use different inference network struc-

tures, e.g., Convolutional Neural Networks (CNNs), Multi-
Layer Perceptrons (MLPs), etc.

3) extensive experiments demonstrate the superior performance on
different tasks over both supervised and unsupervised state-of-the-
art fingerprint methods.

The rest of the paper is organized as follows. We summarize
several related work in drug discovery, in Section 2. In Section 3,
we describe our entire pipeline in details. We show our experiment
results in Section 4, demonstrating the superior performance of our
method. We conclude and discuss the future direction of our paper
in Section 5.

2 RELATEDWORK

In this section, we briefly introduce several related works. First,
we present the raw representation of molecules, namely SMILE
representation, i.e., the persistence form of the molecular data in
the cold data storage. Second, we list a few state-of-the-art fin-
gerprint methods, including the ones using human-designed and
hash-based features.. Finally, we briefly describe some most recent
deep learning based methods, e.g., neural fingerprint [5], seq2seq
fingerprint [43].

2.1 SMILE Representations of Molecules

Initially, themolecules are stored in the form of a sequence represen-
tation, namely the Simplified Molecular-Input Line-Entry system
(SMILE) [37], which is a line notation for describing the structure
of chemical species using text strings. The SMILE system repre-
sents the chemical structures in a graph-based definition, where
the atoms, bonds and rings are encoded in a graph and represented
in text sequences. Simple examples of SMILE representations are
1) dinitrogen with structure N ≡ N (N#N), 2) methyl isocyanate
with structure CH3 − N = C = O (CN=C=O), where corresponding
SMILE representations are included in the brackets. Simply speak-
ing, the letters, e.g., C,N , generally represent the atoms, while
some symbols like −,=, # represent the bonds. We show some more
complicated examples in Figure 1.

2.2 Fingerprint Methods

Hash-based Fingerprints. Many hash-based methods has been
developed to generate unique molecular feature representation
[12, 15, 24]. One important class is called circular fingerprints.
Circular fingerprints generate each layer’s features by applying
a fixed hash function to the concatenated features of the neigh-
borhood in the previous layer. One of the most famous ones is
Extended-Connectivity FingerPrint (ECFP) [29]. However, due to
the non-invertible nature of the hash function, the hash-bashed
fingerprint methods usually do not encode enough information and
hence result in lower performance in the further predictive tasks.

Biologist-guided Local-Feature Fingerprints. Another mainstream
of traditional fingerprint methods is designed based on the bio-
logical experiments and the expertise knowledge and experience,
e.g., [26, 30]. Biologists look for several important task-related sub-
structures (fragments), e.g., CC(OH )CC for pro-solubility predic-
tion, and count those sub-structures as local features to produce
fingerprints. This kind of fingerprint methods usually work well
for specific tasks, but poorly generalize for other tasks.
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Figure 1: The examples of SMILE representations.

2.3 Deep-learning-based Models

The growth of deep learning [20, 39] has provided the great flex-
ibility and performance to create the molecular fingerprint from
data samples, without explicit human guide, [3, 9, 18, 31, 35, 43]. In
this subsection, we discuss two major classes, namely supervised
and unsupervised learning models.

SupervisedModels. Many of deep learning-based fingerprintmeth-
ods are still trained in a supervised-learning fashion [31, 38], which
is using only labeled molecular data samples as inputs and ad-
justing model weights according to their labels [21]. However, as
mentioned earlier, the performance of the deep supervised learning
models are generally limited by the availability of the labeled data.
The state-of-the-art work is the neural fingerprint [9]. The neural
fingerprint mimics the process of generating circular fingerprint
but instead the hash function is replaced by a non-linear activated
densely connected layer. This method is based on the deep graph
convolutional neural network [13, 21, 22, 25]. There are also few
attempts that address the insufficient label issue by using few-shot
learning strategies, e.g., [4]. To secure a satisfactory performance
and acquire enough labeled data, biologists need to perform a suf-
ficiently large number of tests on chemical molecules, which is
prohibitively expensive.

Unsupervised Models. Recently, few unsupervised fingerprint
methods, e.g., seq2seq fingerprint [43], are proposed to alleviate the
issue brought by the insufficient labeled data. These models gener-
ally train deep neural networks to provide strong vector representa-
tions using a big pool of unlabeled data. The vector representation
model is thereafter used for supervised training with other models,
e.g., Adaboost [10], GradientBoost [11], and RandomForest [14], etc.
Since the deep models are trained with a sufficiently large data-set,
the representation is expected to contain enough information to
provide good inference performance. However, this type of methods
are not trained end-to-end, meaning that the representation only
adjusts to the recovery task of the original raw representation. It is
robust to the specific labeled task, but might not provide optimal
inference performance for each task.

3 METHODOLOGY

In this section, we describe the details of our semi-supervised
seq3seq fingerprintmodel. First, an overview of the proposed seq3seq

fingerprint model is given. The proposed semi-supervised model is
trained in an end-to-end fashion by completing two tasks, a self-
recovery task for molecule (without any label) and an inference task
(with specific classification/regression label). After that, we describe
the recovery task and the inference task in detail, their loss func-
tions and how the two tasks are trained. Then the semi-supervised
loss is described. In the end, we offer a multi-task scaffolding view
from frame-semantic parsing [33] in natural language processing
area to explain the proposed model.

3.1 Overview

Different from traditional models [5, 43], the proposed seq3seq
fingerprint model works in a semi-supervised fashion. It means
that our training data comes from two sources, the labeled data, for
classification/regression, as well as the unlabeled data. The labeled
data contains the SMILE strings for molecule data and their labels,
such as acidity or other molecular activities. The unlabeled data
contains just molecular SMILE strings and the unlabeled data is
almost infinitely available. The proposed seq3seq fingerprint model
takes the mixture of the labeled data and unlabeled data together
as training inputs to the network. The work flow is depicted in
Figure 2. The semi-supervised training is done by two tasks: the
self-recovery task and the inference task. The whole pipeline is
illustrated in Figure 3.

3.2 The Duo Tasks in Seq3seq Fingerprint
Model

The Self-recovery Task The self-recovery task is to learn a vector
representation (usually noted as fingerprint in the drug discovery
literature) for each input molecular SMILE string. This task also
requires the SMILE string of the molecule can be recovered from
its fingerprint vector. It is an unsupervised learning problem since
no label information is required in training. As shown in Figure 3,
this task contains a perceiver network and an interpreter network.
This structure is motivated by the seq2seq model [32, 43]. The
original seq2seq model is used in machine translation [32]. It is to
learn a vector representation from a sentence in a given language,
e.g., English, then translate the learned representation into another
language such as French. Seq2seq fingerprint [43] combines the
idea from seq2seq learning and the idea of auto-encoder to learn
the vector representation for molecule.



Figure 2: This figures shows how semi-supervised training is used for our proposed model. We mix the unlabeled data and

labeled data together to train our proposed model. The SMILEs with label 0/1 come from labeled dataset and the SMILEs

without labels (N /A in the figure) come from unlabeled dataset.

We generalize the idea of seq2seq [5, 43] in two views. First, the
perceiver network and the interpreter network in the proposed
seq3seq fingerprint model can be any recurrent deep neural net-
works such as LSTM, GRU neural networks. The only limitation
is that the perceiver network could map the string tokens into a
vector representation and the interpreter could map the vector back
into string tokens. Second, we introduce unlabeled molecule data
into our training process to learn better representations. Instead
of using the SMILE strings of only the labeled molecule data, we
take advantage of the almost infinite unlabeled data and use both
unlabeled and labeled data for the self-recovery task to learn a
more accurate vector presentation than those models which only
use labeled data or unlabeled data separately. The loss function in
our proposed model follows the one in [43]. It is the sum of multiple
cross-entropy loss and we denote it as Lunsup .

The Inference Task The inference task in the proposed seq3seq
fingerprint model is to predict the activity of molecules. In the
proposed model, the inference task includes the perceiver network
and the inference network. The perceiver network is shared in both
self-recovery and inference tasks. It is trained by both labeled and
unlabeled data in an end-to-end fashion. The inference network
maps the seq3seq fingerprint to a final inference result on a certain
prediction task. The structure of the inference network can be any
trainable network which maps the vector into a inference value.
It allows huge flexibility for the choice of the inference network.
For instance, it could be a Convolutional Neural Network (CNN),
a Multi-Layer Perceptron (MLP) or even a single fully-connected
layer. Depending on whether the inference task is classification
or regression, the loss for the inference task Lsup could be either
classification loss (usually a cross entropy loss) or regression loss
(usually a �1 smooth/�2 distance loss). Since computing the Lsup

needs labels, the inference task is only trained on labeled data.

3.3 End-to-end Semi-supervised Learning

As shown in Figure 3, the semi-supervised loss Lsemi combines the
unsupervised loss Lunsup and the supervised loss Lsup together
as

Lsemi = Lunsup + λLsup . (1)

where λ is a hyper-parameter of the proposed model to balance the
two tasks. The proposed model is trained with both supervised data
and unsupervised data. When the data is unlabeled, the supervised
loss Lsup will be zero. Thus, in this case, only the part of the model
in self-recovery task will be trained. While the data is labeled, both
the part of the model in self-recovery and inference will be trained.
The end-to-end training avoids the multi-stage training, i.e., pre-
trained model training or separated classifier training [43]. As a
result, the proposed end-to-end model is expected to provide an
optimal inference performance as well as shorter training time for
specific task than that in a multi-stage model from [43].

3.4 A Multi-task Scaffolding View of Seq3seq
Fingerprint

In [43], the authors viewed seq2seq fingerprint as a machine trans-
lation problem in the Natural Language Processing (NLP) area,
with both source and target language set to be the SMILE represen-
tation. Interestingly, the proposed seq3seq fingerprint model can
be viewed, to some extent, as a multi-task scaffolding frame-

work [33] in the NLP area as well. In [33], the authors focus on
solving the frame-semantic parsing problem, which is basically find-
ing the action (frame) with its associated objects from a sentence.
For example, in sentence "Alice loves Bob.", the frame is "loves" with
its associated objects being "Alice" and "Bob". However, a single
sequence-to-frame network model generally performs poorly in
this task. In [33], they proposed to use a multi-task framework to
refine the predictions. Besides the frame parsing task, they also
introduce the syntactic parsing task. The second task is basically
predicting the word categories, e.g., nouns, adverbs, adjectives, etc.
For the previous "Alice loves Bob." sentence, the result will be that
"Alice" being noun, "loves" being verb and "Bob" being another
noun. In [33], it is demonstrated that the second task significantly
helps the success of the main (frame parsing) task. To sum up, the
multi-task scaffolding frame parsing framework utilizes a second
syntactic parsing task to reinforce the main task which is the frame

parsing. Our seq3seq fingerprint can be viewed in a very similar
fashion: the self-recovery task serves as the auxiliary task to aug-
ment the main prediction task. This modification is also further
demonstrated superior in our experiments described in Section 4.
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Figure 3: This figure shows the proposed seq3seq fingerprint model. The proposed model is trained through two tasks: a self-

recovery task and an inference task. The self-recovery task contains a perceiver network and an interpreter network; the

inference task shares the perceiver with self-recover task and has an inference network. The semi-supervised loss is the sum

of supervised loss and unsupervised loss.

4 EXPERIMENTS

In this section, we first detail the experimental setup, e.g., the data
set description, hardware and software settings, etc. Then we report
the benchmark performance of the seq3seq fingerprint methods
among state-of-the-art methods. Furthermore, to show the flexibil-
ity of our methods and complete our experiments, we offer ablation
studies for the sensitivity of the hyper-parameters of our seq3seq
fingerprint models, e.g., the multi-task balance weight λ, the Recur-
rent Neural Network (RNN) layer hidden size and layer number,
etc.

4.1 Experiment Setup

Datasets As we mentioned in the introduction, the seq3seq finger-
print can be trained from a mixture of both unlabeled and labeled
data. In practices, we usually use an unlabeled data set of a much
larger size than that of a labeled dataset.

Unlabeled Dataset For (large) unlabeled dataset, we use ZINC
drug-like datasets [17]. ZINC is a free database of commercially-
available compounds for virtual screening. The drug-like dataset
from ZINC contains 18,691,354 molecular SMILE representations.
LabeledDataset Two additional datasets, LogP and PM2-10k, were
used for semi-supervised training and test. They are obtained from
National Center for Advancing Translational Sciences (NCATS) at
National Institutes of Health (NIH). Each of them contains around
10,000 molecular SMILE representations with multiple scores, each
score quantifies some chemical property. Classification was con-
ducted on LogP and PM2-10k.

• LogP: Totally 10,850 samples were used from LogP, Each
sample contains a pair of a SMILE string and a water-octanol
partition coefficient (LogP) value. A threshold of 1.88 is used
to label the data. For those samples with LogP value smaller
than 1.88 were classified as negative samples, the rest were
labeled as positive samples.



Table 1: The comparison of classification accuracy on the LogP data. We report the average classification accuracy (Mean) and

the corresponding Standard Deviation (StDev) of 5-fold cross-validation result.

Circular [29] Neural [9] seq2seq [43] seq3seq (Ours)
Mean 36.74% 60.80% 76.64% 89.72%

StDev 0.74% 1.35% 0.43% 0.41%

Table 2: The comparison of classification accuracy on the PM2-10k data. We report the average classification accuracy (Mean)

and the corresponding Standard Deviation (StDev) of 5-fold cross-validation result.

Circular [29] Neural [9] seq2seq [43] seq3seq (Ours)
Mean 39.38% 52.27% 62.06% 68.45%

StDev 1.14% 1.12% 1.98% 0.80%

• PM2-10k: PM2-10k dataset contains 10,000 samples of SMILE
strings and binary promiscuous class labels. Similarly, a
threshold of 0.024896 was used to classify each SMILE. Sam-
ples with value larger than the threshold were considered as
positive 1; otherwise, labeled as 0.

We mix the ZINC drug-like dataset with the labeled dataset and
train the recovery and inference task simultaneously on the mixed
dataset.
Neural Network Structures As we mentioned earlier, the pro-
posed seq3seq fingerprint framework is super flexible in the choice
of the network structure. Theoretically, both perceiver and inter-
preter network can use any stacked Recurrent Neural Network
(RNN) with different layers and layer hidden sizes. Also the RNN
cell can be formed in different types, e.g., LSTM, GRU, etc. Due to
the page limit of this paper, we hereby assume the perceiver and
interpreter network always use the same type of RNN cells with
the same number of layers and hidden sizes. In this section, we only
discuss Gated Recurrent Unit (GRU) [7] as the RNN cell. Also, we
limit the discussion of the inference network to a single densely
connected layer with the output number equaling the number of
the classification class number. For simplicity, we useGRU − L −H
to represent the network structure, where GRU is the RNN cell
type, L ∈ N+ is the stacked RNN layer number and H ∈ N+ is
the RNN cell hidden size. For instance,GRU − 2 − 256 represents a
seq3seq model where both perceiver and interpreter network use
2-layer GRU cell with 256 hidden units.
Learning Hyper-parameters For optimization, we use the Sto-
chastic Gradient Descent (SGD) with a heuristic learning rate de-
caying schedule. The initial learning rate is 0.5 for any training
models. The learning rate will be decayed by a factor of 0.99 if the
test loss does not decrease after 600 training steps. The training
will automatically halt if the learning rate is smaller than 1e − 7.
Under the above hyper-parameter sets, the training of each model
in the semi-supervised setting can generally finish within a few
hours.
Evaluation Metrics Given that we have two tasks of our semi-
supervised learning framework, i.e., recovery and inference task,
we report two evaluation metrics for each model we trained. For re-
covery task, we use an Exact Match Accuracy (EMA) for evaluation.

This metric measure the portion of the exactly recovered sequence
within the entire set of sequences. Furthermore, we report the clas-
sification accuracy (hereafter SSLA for Semi-Supervised Learning
Accuracy) for our classification task.
Comparison Methods We compare our semi-supervised method
with the unsupervised seq2seq fingerprint method [43] as well
as several other state-of-the-art methods: the ECFP [29] (circular
fingerprint) and the neural fingerprint method [9]. We download
the official implementation of the seq2seq fingerprint 1 and care-
fully follow the experimental setting of the authors. The circular
fingerprint is a hand-crafted hash-based feature that was gener-
ated through RDKit 2. The neural fingerprint implementation is
obtained from https://github.com/HIPS/neural-fingerprint, which
we slightly modify to adapt our dataset file format.
Infrastructure and Software The seq3seq fingerprint method
was implemented through Tensorflow package [1], and our semi-
supervised model was trained in a self-hosted 16-GPU cluster plat-
form with Intel i7 6700K @ 4.00 GHz CPU, 64 Gigabytes RAM and
four Nvidia GTX 1080Ti GPUs on each workstation. The code will
be released upon the acceptance of this paper.

4.2 Comparison with State-of-the-art Methods

In Table 1 and 2, we report the 5-fold cross validation average clas-
sification accuracy on LogP and PM2-10k datasets. The proposed
methods are compared with ECFP (circular) fingerprint [12], neural
fingerprint [5] and seq2seq fingerprint [43]. For seq2seq fingerprint,
according to their paper, the seq2seq fingerprint with length 1024 +
Gradient Boosting always provides best performance, so we only
report those results on our paper.

It is shown that on both datasets, the seq3seq fingerprint always
provides best inference performance. On LogP dataset, our seq3seq
model performs significantly superior than the other state-of-the-
art methods, up to 13% in terms of classification accuracy (SSLA in
the tables). Compared with circular fingerprint, the seq3seq finger-
print is data-driven and contains enough information to be recov-
ered. The performance of neural fingerprint is generally limited by
the availability of the labeled data. Seq2seq fingerprint is the closest

1https://github.com/XericZephyr/seq2seq-fingerprint
2http://www.rdkit.org



work in terms of accuracy for now since it can be also trained on
the huge pool of unlabeled data, extracting a good representation
and train/infer with a sophisticated classification model. However,
seq2seq fingerprint is, unfortunately, not an end-to-end framework,
which means the recovery and inference training of seq2seq finger-
print are separate. The unsupervised recovery training can bring
in considerable amount of noise in the representation which limits
further improvements of the inference performance. The seq3seq
fingerprint, which uses the inference task to correct the recovery
task during training, can constantly provide the best performance
among all of the comparison methods.

Table 3: The performance variations with λ and GRUmodel

parameters for LogP data. Layer: the stacked layer number

of RNN cells. LD: Latent Dimension (hidden size) of RNN

cells. EMA: Exact Match Accuracy for self-recovery task.

SSLA: classification accuracy for inference task.

Layer LD λ EMA SSLA
2 128 1 86.31% 89.46%

0.1 91.80% 89.62%
0.01 90.23% 81.05%
0.001 91.42% 64.95%

2 256 1 93.59% 90.18%
0.1 94.52% 89.35%
0.01 95.77% 84.65%
0.001 95.48% 69.16%

Table 4: The performance variations with λ and GRUmodel

parameters for PM2-10k data. Layer: the stacked layer num-

ber of RNN cells. LD: Latent Dimension (hidden size) of RNN

cells. EMA: Exact Match Accuracy for self-recovery task.

SSLA: classification accuracy for inference task.

Layer LD λ EMA SSLA
2 256 1 87.48% 65.28%

0.1 89.84% 64.85%
0.01 91.73% 62.37%
0.001 91.31% 50.66%

3 256 1 82.40% 64.90%
0.1 87.61% 67.92%
0.01 89.33% 68.24%
0.001 90.25% 50.07%

4.3 Sensitivity Analysis of Multi-task Weight
Balance Parameters

Inmulti-taskmachine learning practice, theweight balancing hyper-
parameters among different tasks (in our case, λ in the loss function)
are sometimes critical and sensitive to data. This might not be an
intriguing feature in practices. However, our method is quite robust
and tolerant with λ variations. In this subsection, we report our
sensitivity studies of λ. We choose different scale of λ to see how the
final model performance responds to the variance of λ , showing the

robustness of our method with regard to different weight balancing
hyper-parameters.

In Table 3, 4 as well as Figure 5, we vary λ in the logarithm
scale with a base of 10. We tried 100, 10−1, 10−2, 10−3. On both
datasets, it looks that within a quite wide range of λ, i.e., 10−2 − 100,
the performance is quite robust to the change of λ. The reason
behind this robustness might be the huge unlabeled data pool used
in the training process. Given the model has been trained with a
sufficiently large (up to dozens of millions) molecular data pool,
the resulting model will automatically adjust to a small task weight
perturbation.

4.4 The Ablation Study of Neural Network
Structures

In this section, we provide a comprehensive study of the impacts
of different layers and layer hidden sizes of our seq3seq fingerprint
models. We report the 5-fold cross validation Exact Match Accuracy
(EMA) and the classification accuracy (SSLA) in Table 5 and 6 for
each of the two datasets, respectively. Figure 4 (a) and (b) also
illustrates the trends when varying the layer numbers and layer
hidden sizes.

Inference Task It is super exciting to reveal the robustness of
classification accuracy to the change of network structures

on both datasets. In Figure 4, the classification accuracy (blue bars)
almost stays at the same height when varying the layer numbers
and layer hidden sizes. This implies the importance of the represen-
tation learning inside the seq3seq fingerprint. This further support
the positive effects of the large-scale (up to dozens of millions)
unlabeled data utilization.

When the inference is super robust to the network changes, for
self-recovery task (in terms of EMA), we observe a decreasing trend
when increasing the layer depth (numbers). Meanwhile, the increas-
ing number of hidden units inside each layer generally yields better
EMA. This suggests that the improvement of self-recovery task has
higher reliance on the layer hidden sizes. Deeper network might
not always be an elixir for a simple auxiliary task like self-recovery.
This observation might help future network design. To simultane-
ously ensure high inference performance and reduce training time
(deeper network generally takes longer to train.), it might be a good
idea to use reasonably deep and wide RNN networks.

5 CONCLUSIONS

In this paper, we discuss a new semi-supervised deep learning
based molecular prediction system, called seq3seq fingerprint.
Our model is the first attempt in sequence-based deep learning
method utilizing both unlabeled and labeled data for drug discov-
ery. The reinforcement from the unlabeled data is demonstrated
to significantly improve the inference performance by enhancing
the representation power of the perceiver network. As a result,
the superior inference performance over multiple state-of-the-art
methods is revealed in our extensive experiments.

In the future, a potential direction might be improving the train-
ing algorithm [28, 41, 42]. Furthermore, our seq3seq fingerprint
method still share some common aspects with Natural Language
Processing (NLP) area as the seq2seq fingerprint does [43]. As de-
scribed in Section 3, it looks that we have found a new direction



Table 5: The comparison of 5-fold cross validation classification accuracy among different seq3seq GRU models on the LogP

data. Both average (Mean) and Standard Deviation (StDev) are reported for the 5-fold splits. FP Length: FingerPrint Length.

SSLA: classification accuracy for inference task. EMA: Exact Match Accuracy for self-recovery task.

GRU-2-128 GRU-3-128 GRU-4-128 GRU-5-128 GRU-2-256 GRU-3-256 GRU-4-256 GRU-5-256
FP Length 256 384 512 640 512 768 1024 1280
SSLA Mean 89.62% 89.12% 89.05% 89.72% 89.48% 89.64% 88.90% 88.11%
SSLA StDev 0.62% 0.22% 0.10% 0.41% 0.44% 0.42% 0.31% 0.40%
EMA Mean 91.39% 85.75% 77.13% 68.64% 96.13% 94.24% 87.99% 83.86%
EMA StDev 0.46% 0.53% 0.56% 0.80% 0.21% 0.31% 0.45% 0.41%

Table 6: The comparison of 5-fold cross validation classification accuracy among different seq3seq GRU models on the PM2-

10k data. Both average (Mean) and Standard Deviation (StDev) are reported for the 5-fold splits. FP Length: FingerPrint Length.

SSLA: classification accuracy for inference task. EMA: Exact Match Accuracy for self-recovery task.

GRU-2-128 GRU-3-128 GRU-4-128 GRU-5-128 GRU-2-256 GRU-3-256 GRU-4-256 GRU-5-256
FP Length 256 384 512 640 512 768 1024 1280
SSLA Mean 65.65% 67.11% 65.80% 67.23% 66.74% 68.08% 68.45% 67.09%
SSLA StDev 0.19% 0.85% 0.61% 0.52% 0.57% 0.35% 0.80% 0.67%
EMA Mean 83.84% 81.24% 78.60% 74.38% 92.49% 91.72% 87.36% 82.64%
EMA StDev 0.45% 0.67% 0.88% 0.88% 0.37% 0.25% 0.29% 0.76%
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(b) Model hyper-parameter comparison on the PM2-10k data
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Figure 4: Impacts of the network structures on different metrics on both LogP and PM2-10k dataset. 1) The robustness of

inference performance (SSLA, blue bars) is revealed. 2) The positive and negative correlations with regard to the self-recovery

performance (EMA, red bars) are observed for RNN network depths and widths, respectively.

to invent new drug discovery methods. In the future, it might be
interesting to further investigate bonds between drug discovery
and NLP area, which might bring in many novel methods to further
accelerate drug discovery research.
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ABSTRACT 
Cyclic mononucleotides, in particular 3’,5’-cyclic guanosine 
monophosphate (cGMP) and 3’,5’-cyclic adenosine 
monophosphate (cAMP), are molecular signals that mediate a 
myriad of biological responses in organisms across the tree of life. 
In plants, they transduce signals such as hormones and peptides 
perceived at receptors on the cell surface into the cytoplasm to 
orchestrate a cascade of biochemical reactions that enable them to 
grow and develop, and adapt to light, hormones, salt and drought 
stresses as well as pathogens. However, their generating enzymes 
(guanylyl cyclases, GCs and adenylyl cyclases, ACs) have just 
been recently discovered and are still poorly understood. Here, we 
employed a computational approach to probe the physicochemical 
properties of the catalytic centers of these enzymes and the 
knowledge of which, was used to create a web-based tool, 
ACPred (http://gcpred.com/acpred) for the prediction of AC 
functional centers from amino acid sequence. Understanding the 
nature of such catalytic centers have enabled the creation of 
predictive tools such as ACPred which will in turn, facilitate the 
discovery of novel cellular components across different systems. 1 
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1 INTRODUCTION 
Cells make use of molecular signals to relay information such as 
hormones and growth factors perceived at the cell surface, into the 
cell to trigger a cascade of biochemical reactions that will lead to 
responses at the physiological level [1, 2]. This transduction of 
signal from the external environment into the cell is crucial for the 
growth and development of an organism and, to allow the 
organism to efficiently response to changes in the environment [3-
6]. Universal molecular signals such as small peptides, hormones, 
organic molecules, calcium ions and cyclic nucleotides (3’,5’-
cyclic guanosine monophosphate (cGMP) and 3’,5’-cyclic 
adenosine monophosphate (cAMP)) have long been shown to 
exist in organisms across the tree of life and signaling a myriad of 
biological responses [7-13]. In animals including humans, cGMP 
is a vasodilating signal that is perhaps most famous for causing 
penile erection upon sexual stimulation [14]. In plants, cGMP also 
signals many biological responses including responses to light, 
hormones, salt and drought stresses as well as ozone and 
pathogens [for review, see [10, 13, 15]. Meanwhile, cAMP signals 
polarized pollen tube growth, stomatal opening, responses to light 
and temperature, and modulates ion transport [16-20]. These 
signaling molecules are particularly important for plants because 
unlike animals, they are sessile organisms and cannot run away 
from danger. They must therefore rely on a set of molecular 
signals such as cGMP and cAMP to provide efficient cellular 
signaling mechanisms in order for them to adapt and survive [1-3, 
9, 21, 22]. However, the enzymes (guanylyl cyclases, GCs and 
adenylyl cyclases, ACs) that generate cGMP and cAMP in plants 
have just been recently discovered and are still poorly understood 
although they have been well-characterized in other systems such 



 
 

as animals and bacteria. One reason for their apparent elusiveness 
is that plant cells have complex domain architecture of proteins 
that can perform multiple functions e.g., at the extracellular 
region, they can perceive and bind to ligands while at the 
cytosolic region, they can bind to proteins and/or organic 
compounds at modulatory sites or catalyze certain reactions [12, 
13, 15, 23-26]. This is attributed to divergent evolution where 
plant signal perception and downstream cellular reactions are 
distinct from those of other eukaryotes. In a relatively crowded 
plant cell occupied by a large central vacuole, proteins assume 
multiple roles and GCs and ACs are well-placed in their 
microenvironments to perform highly localized signaling 
functions that include for e.g., switching from one signaling 
network to another [27-32]. Therefore, in plants, receptors and 
signaling molecules cannot be identified using standard 
homology-based searches querying with proteins from lower or 
higher eukaryotes because it is beyond detection limits, hence 
their apparent elusiveness [24, 33].  

Recently, a motif-based approach has led to the discovery of a 
new class of GCs and ACs some of which, have been studied in 
greater detail [34]. This new class of enzymes are known as 
functional centers and are structurally different from canonical 
GCs and ACs found in other organisms. They are usually found 
embedded within larger primary domains in complex multi-
functional proteins and while they possess the conserved key 
amino acids for catalysis, they do not resemble the overall 
structure of stand-alone canonical GCs and ACs [26, 33]. Their 
discovery has in recent years, prompted intriguing questions 
regarding their regulatory roles at both the molecular and 
biological levels. Emerging experimental data have shed light on 
some of these queries, but many more remain unanswered. 
Discovering new functional centers will help elucidate unknown 
functions and contribute to the understanding of the nature of 
these group of enzymes. As such, the discovery of these 
functional centers requires automation in the form of a web-
server. We have recently created a web-tool for the prediction of 
GC functional center called GCPred (http://www.gcpred.com) and 
have tested this tool on both plant and animal proteins [33]. 

In the same manner, a predictive tool is required for the 
identification of candidate AC centers. Here, we probe the 
physicochemical properties of known GCs and ACs to understand 
the nature of these highly similar catalytic centers and use this 
knowledge to develop ACPred (http://gcpred.com/acpred). 

2 METHODS 

2.1 Bioinformatic analysis of AC and GC centers 
Experimentally validated GC and AC centers from plant proteins 
were analyzed in terms of their overall domain organization and 
structural architecture. The domain organization of proteins were 
presented as 2D columns with lengths adjusted to approximately 
reflect their relative amino acid lengths and they are all aligned at 
their AC centers. Information about the annotated domains, 
transmembrane regions and other key components of the proteins 
were obtained from UniProt (http://www.uniprot.org) and 

presented in different colors accompanied by a legend. 
Representative 3D structure of each GC and an AC containing 
docked GTP or ATP substrates were prepared using UCSF 
Chimera visualization software available at 
https://www.cgl.ucsf.edu/chimera. The catalytic centers were 
colored, and substrate orientations clearly defined. The key amino 
acids in the motif that are involved in substrate interaction 
functions were colored according to surface charge. 

Next, the physicochemical properties of the catalytic centers 
were analyzed based on known values of 3 categories: 
hydrophobicity, molecular weight and isoelectric point, of each 
amino acid. The data for each protein is presented individually as 
a heatmap with red representing highest and white representing 
lowest values in that category. Average values of GCs and ACs in 
each category were also represented in line graphs to show 
variations between GCs and ACs. 

2.2 Development of the ACPred server 
The website ACPred was written in HTML, PHP and CSS, 
running on an Ubuntu server that LNMP package (Nginx, 
MySQL, PHP) installed. The header of the home page with 
brown-white linear ingredient background was defined by a CSS 
library Bootstrap. The image set on the right of the title ACPred, 
is a representative model of an AC center docked with the ATP 
substrate, making it clear for the user to understand the purpose of 
our website, that is to identify candidate ACs. In the home page, 
we first explain the utility of this tool giving the background 
knowledge and other important details as well as providing 
detailed instructions written in large size Arial font to guide first-
time users. Next, we include a ratio element following the 
instruction asking users if metal ion binding feature should be 
included in the prediction. We also include a FASTA format 
example that contains the name of the protein in the header and its 
full-length amino acid sequence. Below the example, there is a 
large text area that can automatically adjust its width according to 
the screen size of the web browser. Characters typed inside the 
text area will be automatically converted to small sized font with 
courier style and the user is also able to enter multiple sequences 
at one time. Although the height of text area is fixed at 400px, the 
user can still input as many as they want because the text area 
allows for over-flow. At the bottom of the text area, there is a 
button element that enables user to submit the input data as string 
to the server. This submit button is disabled until the text area is 
filled, otherwise a warning message will be shown. To quickly 
learn the feature of our webserver, the user only need to copy the 
example into the text area (full sequence required) and then click 
the submit button to view the result page. At the footer of the 
home page, we provide the prior works that have led to the 
development of this server as clickable reference links which will 
take the user directly to the primary source of the articles.   

The main calculation is done in the result page and written in 
PHP. The header of the result page is almost the same as that in 
the home page, but we replaced the instruction with an 
interpretation guide that helps the user make good judgment on 
their retrieved hits. The AC report for each sequence can be 



divided into 3 parts: a sequence panel, a hits table and 3 bar 
charts. If the users enter more than one sequence, these 3 parts 
will be shown as a loop, and the report for each sequence is 
independent. However, none of the 3 parts will be shown if no AC 
center was identified in any given sequence. The sequence panel 
contains a bold header with the protein name and a numbered 
body that shows 100 amino acids in each line. To do this, we 
created a PHP function “split” that could first split the string that 
was entered in the home page to several single sequences 
according to the special symbol “>” which is the symbol at the 
beginning of a FASTA format sequence and check if the full 
string contains more than one sequence. Then, position numbers 
will be generated for each sequence through the PHP function 
“position” if more than one hits (that contain 14 amino acids and 
satisfy the AC motif shown in Fig. 1) were identified within each 
sequence. Each hit with its own position number will be 
highlighted in the sequence panel and shown in the hits table. 
Next, to fill in the ACC hydrophobic value, ACC molecular 
weight, ACC isoelectric point and ACC mean value, we created 
another PHP function “input” that will call MySQL procedure 
“input check” with 2 parameters: the full sequence and the unique 
position number for each ACC hit. Thus, the number of invoke 
times of this PHP function depends on the number of ACC hits 
found. The procedure “input check” will first pick out the 
objective hit according to the 2 parameters that passed from the 
PHP function, then splits the hit into 14 amino acids. In MySQL 
database, we have a “hydrophobic table” that stores known amino 
acids’ hydrophobic values, a “molecular weight” table that stores 
known amino acids’ molecular weights, an “isoelectric point” 
table that stores known amino acids’ isoelectric point values. The 
procedure will calculate those 4 values (termed ACC 
hydrophobicity, ACC molecular weight, ACC isoelectric point) 
for the objective AC hit according to the algorithm shown in Fig. 
7B. Those 4 values will be scaled 0 to 1 with 3 decimal numbers 
and shown in 3 possible colors (green, red, black) based on 
specific cut off points determined from currently available 
experimental data. Color definition and labels are described under 
each table. Following each table, there are 3 bar charts created 
using the open source PHP graphic library “pchart”. Because each 
hit contains 14 amino acids, the horizontal axis of the bar chart is 
fixed to represent these amino acids beginning from amino acid at 
position 1 to 14 respectively. Unlike the hits table where each row 
would only cover the values of one AC domain, the 3 types of the 
values (ACC hydrophobicity, ACC molecular weight, ACC 
isoelectric point) of the hits within the same sequence will be 
combined into the 3 bar charts named as ACC hydrophobicity 
charts, ACC molecular weight chart and ACC isoelectric point 
chart. All these 3 charts show the deviation from mean values for 
each hit. For instance, if the ACC hydrophobic value of one ACC 
domain is shown in green, then the average height of the bar in the 
hydrophobic chart will be closer to 0 than the black or red values. 
However, if there are more than one hit within the same sequence, 
each hit will be given a unique color, starting from green, then 
red, blue, etc. All the bar charts have the same height and weight, 
but they will automatically adjust the unit size of the vertical axis 
according the maximum and minimum heights of bars. At the 

bottom of the result page, there is a link that allow the user to 
download the retrieved hits as a *.csv file.   

3 RESULTS AND DISCUSSION 

3.1 Domain architecture of GCs and ACs 

 

Figure 1: Domain organizations of GC and AC centers. 

A motif-based approach has in the past, identified several GC and 
AC centers [13, 26]. The motif was constructed by including only 
conserved amino acids within the catalytic centers of canonical 
GCs and ACs from prokaryotes and eukaryotes. Specifically, the 
motifs consist of 14-amino acid long amino acids with amino acid 
in position 1 forming hydrogen bonds with guanine or adenosine 
of GTP or ATP respectively and amino acid in position 3 
determining substrate specificity while amino acid in position 14 
of the motif binds to the phosphate acyl group and stabilizes the 
transition of substrate to its cyclic form [35]. The motifs may also 
undergo rational modifications to include species-specific and 
metal-binding filters or amino acids of similar chemical properties 
and they have been particularly successful when used in tandem 
with structural modeling and docking simulations [23-25]. In 
higher plants, known GC centers are AtPSKR1, AtBRI1, 
AtWAKL10, AtPepR1, AtPNP-R1, AGNOGC1, AtGC1, PnGC1 
and HpPepR1 [35-43] while AtClAP, AtPPR-AC, AtKUP7 
remain the only experimentally confirmed AC centers to-date 
[44]. Here, we show the domain architecture of experimentally 
confirmed proteins with GC and AC activities from the model 
plant Arabidopsis thaliana in Fig. 1. It is obvious that these 
catalytic centers occupy complex proteins that have different 
primary functions. For instance, many GC centers are found 
embedded within a larger kinase domain of hormone/peptide 
receptor complexes (AtPSKR1, AtBRI1, AtPepR1, AtPNP-R1 
and AtWAKl10) thus suggestive of a role for GCs in regulating 
reactions in the hormone/peptide-dependent pathways [36, 37, 39-
41, 45]. Indeed, the GC activities of AtBRI1 and AtPSKR1 have 
been shown to be intricately linked to their kinase domains which 
they reside in [27, 32, 37, 45]. Furthermore, binding of the 
extracellular receptor domains to their natural ligands can elevate 



cytosolic cGMP levels and in the case of AtPNP-R1, enables 
regulation of ion and water homeostasis [41]. Meanwhile, AC 
centers are found in proteins that have more varied primary 
functions. For example, AtKUP7 acts primarily as a potassium 
transporter while AtClAP which assembles clathrin during 
endocytosis, is implicated in plant defense [44, 46, 47].  

In addition to the domain architectures, we also show the 3D 
structures of typical GC and AC centers using AtPSKR1 and 
AtKUP7 as representatives (Fig. 2). From a structural perspective, 
the GC and AC centers share similar secondary folds where amino 
acids from position 1 to 14 of the motif form an alpha-helix that is 
followed by a solvent-exposed loop harboring a positively 
charged [RK] amino acid. At the tertiary level, they form a clear 
cavity that spatially fits the GTP or ATP substrate albeit 
accommodating them only at specific substrate orientations. 
Previous structural works have ascertained that the substrate must 
assume a binding pose where the nucleotide region of the 
substrate points towards the residue at position 1 of the motif 
located deep into the pocket at the catalytic center while the 
hydrophilic negatively charged phosphate end points towards the 
positively charged amino acid at position 14 of the motif and 
protruding outward from the cavity orifice. This binding pose is 
deemed favorable for catalysis [23-25]. The structural similarity 
between GC and AC centers is not surprising given that their 
substrates share considerable physical and chemical properties. 
But, is there a difference in substrate affinity between such GC 
and AC centers? And if so, how do they discriminate the GTP and 
ATP substrates?      

Figure 2: Representative structure of GC and AC centers. 

3.2 Physicochemical signatures of GCs and ACs 
Previous mutational works and computational simulations have 
showed hints of substrate preference at the catalytic center of 
GCs. For instance, in AtBRI1, mutations at position 3 (G989K and 
G989I) of the motif reduced the catalytic activity of the GC center 

with G-I mutation being the most severe [45] while previous 
computational simulations on AtPSKR1 also indicate reduced 
substrate affinity when amino acid at the same position of the 
motif was mutated [25]. 

Since mutation of the amino acid at position 3 retains some 
catalytic activity [45] and it is also unlikely that these catalytic 
centers can spatially discriminate GTP and ATP, substrate 
preference must therefore be conferred by surface charges and/or 
other physical means such as hydrophobicity. To this end, we 
probe the physicochemical properties of known GC and AC 
centers. In particular, we analyzed the hydrophobicity, isoelectric 
point and molecular weight of amino acids in the GC and AC 
centers and expressed them as heatmap in Fig. 3. Among the GCs, 
the amino acids at each position of the motif show consistent 
physicochemical properties but among the ACs, these properties 
are more varied from one protein to another. For instance, the 
hydrophobicity of amino acids residing at positions 5 and 8 of the 
motif show considerable variation among the ACs while the same 
is also observed for the isoelectric point of ACs at position 10 (red 
boxes in Fig. 3). In general, the AC centers show greater variation 
in physicochemical properties across position 1 to 14 of the motif 
compared to the GC centers and we argue that this is necessary to 
compensate for the lack of ‘stickiness’ of the adenine nucleotide 
that lacked a =O group (red circle in Fig. 4).    

We also expressed this analysis as average values for all three 
physicochemical properties in Fig. 5. When comparing ACs to 
GCs, there is significant difference in the hydrophobicity and 
isoelectric point of the amino acids at the positions indicated by 
red arrows in Fig. 5. We suspect that this, and the greater variation 
among amino acids within the centers might be an intrinsic nature 
of ACs that is necessary for optimal binding to the ATP substrate. 
Unlike GTP, ATP lacks a =O group (see blue and red circles in 
Fig. 4), thus may require greater difference in amino acid charges 
and hydrophobicity at the catalytic center for optimal binding and 
catalysis. It was previously suggested that the negatively charged 
amino acid [DE] at position 3 of AC motif confers substrate 
specificity to ATP [48] but it is likely that intermediary or 
flanking amino acid residues at the catalytic center play a role as 
well since mutations at position 3 of this motif did not completely 
abolish enzymatic activity of AtBRI1-GC [45].  

Here, we showed that there is indeed considerable difference 
in the physicochemical properties of intermediary amino acids 
between GCs and ACs where in ACs, there is high variation in 
these properties which together with the negatively charged amino 
acid at position 3 [DE] of the motif, enable ACs to bind ATP. 
Other factors such as spatial and temporal abundance of GTP and 
ATP in microenvironments of the cell as well as the dependence 
on extracellular ligand binding and catalytic activity of primary 
domains such as kinases, can regulate cyclic mononucleotide 
generation by GCs and ACs. Further research is required to 
determine how these functional centers discriminate their 
substrates as computational methods including the bioinformatics 
analysis given here as well as docking simulations and 
biochemical evidence done elsewhere, have previously 
demonstrated that these catalytic centers can discriminate 
substrates despite being very similar in nature [15, 25, 33]. 
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Figure 3: Heatmap illustrating the physicochemical properties of known GC and AC centers. 

Figure 4: Structure of ATP (left) and GTP (right). 

Figure 5: Average physicochemical values of known GC and AC centers. 



3.3 The ACPred server 
In order to rapidly predict candidate AC centers, we have 
developed ACPred. ACPred is a webserver built based on the 
algorithm and function of its parent server GCPred created 
previously for the prediction of GC centers [33]. The ACPred 
server allows user to enter single or multiple amino acid 
sequences in FASTA format and returns predicted hits ranked 
based on a set of numerical ACC values. The server uses 
algorithm that calculates predicted ACCs based on a set of 
physicochemical properties of amino acids in experimentally 
validated ACCs as presented in Fig. 6, where hits that contain the 
conserved amino acids at positions 1, 3 and 14 of a continuous 
string of amino acids are assigned statistical values 0-1, with 1 
being the closest to the physicochemical properties of current 
ACC population. After submitting the queried sequence, the 
server returns a table of predicted ACCs that is accompanied by a 
set of ACC values normalized 0-1, which are color-coded to aid 
interpretations. In addition to the table, the result page also 
provides visual aids in the form of graphs that depict deviations of 
amino acids at individual positions of the ACC from mean values 
calculated from known ACC population. This comparative 
analysis at the single amino acid level may be useful for those 
interested in further probing of their candidates by e.g., guiding 
mutation and structural experiments. Previous works have 
established that this class of ACC resembles the GCCs where it 
typically contains 14 amino acids where the amino acids at 
positions 1, 3 and 14 have direct substrate binding and catalytic 
functions. We note that ACPred is only able to predict functional 
AC centers and not canonical AC domains or transmembrane 
regions.  

The workflow and algorithm of ACPred is presented in Fig. 7. 
In step 1 of the ACPred workflow, the user enters single or 
multiple amino acid sequence in FASTA format and then click 
submit. The server screens the user input sequence for the 
presence of conserved amino acids at positions 1, 3 and 14 in 
continuous fashion in step 2 and if present, a data filtering process 
in step 3 removes other amino acids from the input sequence thus 
retaining only the identified ACC candidates. In step 4, a set of 
calculations are performed to determine the physicochemical 
properties of amino acids at each position of the ACC candidates 
and assigned values of 0-1 based on how close they resemble 
values of experimentally validated ACC population. The 
equations are this calculation is presented in the algorithm of Fig. 
7. Specifically, if AC Domain “j” exists in sequence A, the AC 
algorithm calculates ACC hydrophobic (GH), molecular weight 
(GW), isoelectric point (GP) and ACC mean ( ) values (0-1) 
using the equations shown in the “perform calculations” box for 
kth amino acid (where k = intermediary amino acids in the ACC) 
based on mean values of ACC population in the ACC database. 
The algorithm then generates a report that includes tables of ACC 
values and charts depicting variation from population mean and 
HTTP response sends the result page to the user in step 5 of the 
workflow. ACC database in Fig. 6 contains mean 
physicochemical values of amino acids at each position of known 
ACCs and from which calculations of input sequence were based 

on. Calculated values of each amino acid property were scaled 0-1 
giving rise to “ACC values” where 1 represents closest to ACC 
population mean thus most probable and 0 is least probable.  

 

Figure 6: Mean physicochemical values of amino acids at each 
position of the 14-amino acid long AC motif calculated from 
experimentally validated ACC population. 

    An ACC mean value is also generated by averaging the three 
properties. The ACC values are color-coded where highly 
recommended hits should contain at least 2 green 
physicochemical values in addition to green ACC mean and 
contain no red values. Based on currently available experimental 
data, cut-off ACC values are determined where the values higher 
than the upper cut-off limit are colored green (high confidence) 
and those below the lower cut-off limit are colored red (low 
confidence). The ACC values are currently set at upper/lower 
limits of 0.700/0.500 for all physicochemical properties 
considered (i.e., hydrophobicity, Molecular Weight, Isoelectric 
point) as well as for the ACC Mean. ACPred also presents an 
option for metal ion binding which is typically afforded by 
negatively-charged amino acids at 0-2 positions downstream of 
the ACC [12]. ACPred is available at http://gcpred.com/acpred 
without registration or license. 



The ACPred webserver is to our knowledge, currently the only 
tool that can rapidly identify ACs and importantly, it provides 
statistical values in the form of ACC values which allow user to 
order the retrieved hits. The latter feature is especially useful in 
high-throughput applications where ACC values can serve as a 
reliable indicator of confidence. As such, ACPred provides an 
added layer of confidence and a way of ranking retrieved hits in 
the form of scaled color-coded 0-1 ACC values. Previously, the 
AC motif used for the discovery of AC centers have identified 
several candidates from the proteome of Arabidopsis thaliana but 
there is no way of ranking them [12]. Using this server, we can 
now rank selected candidate ACs based on ACC values generated 
from algorithm that considers the physicochemical properties of 
intermediary amino acids (Table 1). We demonstrated the utility 
of this server on the AC candidates reported by [12] and they all 
contain hits of high confidence (Table 1). However, we note that 
the predictive strength of ACPred may be weaker in comparison 
to its parent webserver GCPred (used for the prediction of GC 
centers). This is due to the fact that experimentally validated AC 
centers are more varied in terms of their physicochemical 
properties which we have suggested to be an intrinsic nature of 
AC centers to enable more optimal binding to the ATP substrate. 
In addition, AC centers have only been recently identified and 
currently lack detailed characterization e.g., they are lacking 
mutational, structural and biochemical analyses that might reveal 
their substrate binding and inter-domain regulatory mechanisms. 
As such, we have decided to introduce a relatively low cut-off 
points to provide less stringent prediction conditions. We will 
continuously refine the ACC cut-off values to improve the 
predictive strength and reliability as more experimental data 
surface and also extend its service to predict other modulatory 
sites in the near future [49]. 

Table 1: Testing of Arabidopsis AC centers on ACPred 

Name; 
TAIR ID Position ACC 

Hp 
ACC 
MW 

ACC 
Ip 

ACC 
Mean 

*AtClAP; 
At1g68110 329-342 0.646 0.780 0.724 0.716 

*AtPPR; 
At1g62590 485-498 0.706 0.731 0.765 0.734 

*AtKUP7; 
At5g09400 80-93 0.801 0.810 0.904 0.839 

At1g25240 324-337 0.562 0.782 0.821 0.722 
At2g34780 271-284 0.743 0.780 0.650 0.725 
At3g02930 149-162 0.815 0.762 0.851 0.809 
At3g04220 62-75 0.537 0.735 0.743 0.672 
At3g18035 382-395 0.684 0.853 0.735 0.757 
At3g28223 276-289 0.637 0.839 0.847 0.774 
At4g39756 250-263 0.718 0.747 0.793 0.753 
Note: These are candidate AC centers reported by [12] and * 
indicates experimentally confirmed ACCs. Hp: Hydrophobicity; 
MW: Molecular weight; Ip: Isoelectric point. 

 

 

Figure 7: ACPred webserver workflow and algorithm. 

4 CONCLUSION  
In summary, we have conducted bioinformatic analysis on both 
GC and AC centers specifically probing their physicochemical 
properties to determine if there is any molecular basis for GTP 
and ATP substrate discrimination. Based on our analysis, we have 
linked the higher variation in charge and hydrophobicity within 
AC centers in addition to previously assigned [DE] amino acid at 
position 3 of the motif, for preferential ATP binding. We have 
also presented the development of a new webtool ACPred, that 
can rapidly predict candidate AC centers with novel ACC values 
that enable ranking of retrieved hits. We believe that the 
understanding of the nature of these new class of catalytic centers 
(GCs and ACs) have enabled the creation of predictive tools such 
as ACPred which will in turn, facilitate the discovery of novel 
cellular components across different biological systems. 
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