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ABSTRACT

Observing the recent progress in Deep Learning, the employment of
AI is surging to accelerate drug discovery and cut R&D costs in the
last few years. However, the success of deep learning is attributed
to large-scale clean high-quality labeled data, which is generally
unavailable in drug discovery practices.

In this paper, we address this issue by proposing an end-to-end
deep learning framework in a semi-supervised learning fashion.
That is said, the proposed deep learning approach can utilize both
labeled and unlabeled data. While labeled data is of very limited
availability, the amount of available unlabeled data is generally
huge. The proposed framework, named as seq3seq fingerprint,
automatically learns a strong representation of each molecule in
an unsupervised way from a huge training data pool containing
a mixture of both unlabeled and labeled molecules. In the mean-
time, the representation is also adjusted to further help predictive
tasks, e.g., acidity, alkalinity or solubility classification. The entire
framework is trained end-to-end and simultaneously learn the rep-
resentation and inference results. Extensive experiments support
the superiority of the proposed framework.
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1 INTRODUCTION

In the past few years, the application of Artificial Intelligence (AI)
technologies in drug discovery has become significant and increas-
ingly popular. Observing the most recent rapid growth of a key
technology in AI, namely deep learning (or deep neural net-

work), the whole industry and academia are looking towards AI to
speed up the drug discovery, cut R&D cost and decrease the failure
rate in potential drug screening trials [6].

However, the previous success of deep learning in multiple ap-
plications, e.g., image understanding [8, 34], medical imaging [16,
23, 36, 40], video understanding [2, 46], bioinformatics [43–45], and
machine translation [19], etc., has implied a reliance on large-scale
high-quality labeled data-sets. The training procedure of those deep-
learning-based state-of-the-art models generally involve millions of
labeled samples. In the meantime, however, for the drug discovery
tasks, the scale of labeled data-set stays around only thousands of
examples due to the insanely high cost of obtaining the clean labeled
data through the biological experiments. The available amount of
the labeled training data is absolutely insufficient to secure the
success of the application of deep learning in the drug discovery
[27]. This huge gap between the requirement and availability of the
labeled data in drug discovery has become a bottleneck of applying
deep learning techniques into drug discovery.

Given the high cost of obtaining sufficient labeled data points, it
seems impractical to increase the labeled data-set scale to a satisfac-
tory level. To address this issue, we propose a semi-supervised deep
learning modeling strategy. In simple terms, the proposed deep



learning framework can learn from both labeled and unlabeled
data, while the unlabeled data is almost infinitely available. For
instance, the ZINC data-set [17] is publicly available and contains
over 35 million unlabeled molecule data. With such scale of data
being used, the deep learning model is expected to be trained with
enough representation power to help the inference task.

In this paper, we propose a semi-supervised data-driven multi-
task deep-learning-based drug discoverymethod, named as seq3seq
fingerprint. The reasons behind this naming are two-fold: 1) this is
the next-generation seq2seq fingerprint [43], whose major up-
grade is that the original two-stage pipeline has been combined into
an multi-task one-stage end-to-end pipeline to ensure much more
decent inference performance; 2) the seq3seq fingerprint frame-
work contains three ends with one input and two outputs while
the seq2seq fingerprint contains two ends with one input and one
output.

To briefly introduce the proposed seq3seq fingerprint framework,
the seq3seq fingerprint network can be considered as a pipeline
with one input and two outputs. The designed neural network can
take the molecule inputs for training,with or without labels. The
input is the raw sequence representation of a molecule, namely
SMILE representation. Examples are referred in Figure 1. The two
outputs will correspond to the two tasks inside this network. The
first one is the self-recovery. The network is expected to be able
to generate a vector representation which is able to be recovered
back to original raw sequence representation. The second task is
the inference whenever the label is available. For instance, it can
be a task to predict the acidity, alkalinity or solubility of a single
molecule. The two tasks are trained within the same network in
an end-to-end fashion. As a result, in a specific inference task, the
vector representation will be able to provide both good recovery
performance and inference performance. Also, the network can be
trained inside a mixture data pool with both labeled and unlabeled
data, which is sufficient enough to ensure the fine training of the
neural network.

The benefits of the seq3seq fingerprint are three folds: 1) the
training phase of seq3seq fingerprint takes both labeled and unla-
beled data into consideration, which is able to provide both strong
vector representation and good inference performance. 2) it is data-
driven, eliminating the reliance on expert’s subjective knowledge.
3) since the unlabeled data is almost unlimited in practice, it will sig-
nificantly complement the sole training with labeled data, ensuring
a final good inference performance.

The technical contributions of this paper are summarized as: 1)
the seq3seq fingerprint method is obviously the first attempt to
utilize both labeled data and unlabeled data for sequence-based
end-to-end deep learning in drug discovery. 2) several important
features are enabled in the seq3seq fingerprint to help inference:

• this is the first end-to-end framework coupling both the
recovery and inference task.

• the proposed framework is general enough to suit different
prediction tasks, e.g., classification, regression, etc.

• it is feasible to use different inference network struc-

tures, e.g., Convolutional Neural Networks (CNNs), Multi-
Layer Perceptrons (MLPs), etc.

3) extensive experiments demonstrate the superior performance on
different tasks over both supervised and unsupervised state-of-the-
art fingerprint methods.

The rest of the paper is organized as follows. We summarize
several related work in drug discovery, in Section 2. In Section 3,
we describe our entire pipeline in details. We show our experiment
results in Section 4, demonstrating the superior performance of our
method. We conclude and discuss the future direction of our paper
in Section 5.

2 RELATEDWORK

In this section, we briefly introduce several related works. First,
we present the raw representation of molecules, namely SMILE
representation, i.e., the persistence form of the molecular data in
the cold data storage. Second, we list a few state-of-the-art fin-
gerprint methods, including the ones using human-designed and
hash-based features.. Finally, we briefly describe some most recent
deep learning based methods, e.g., neural fingerprint [5], seq2seq
fingerprint [43].

2.1 SMILE Representations of Molecules

Initially, themolecules are stored in the form of a sequence represen-
tation, namely the Simplified Molecular-Input Line-Entry system
(SMILE) [37], which is a line notation for describing the structure
of chemical species using text strings. The SMILE system repre-
sents the chemical structures in a graph-based definition, where
the atoms, bonds and rings are encoded in a graph and represented
in text sequences. Simple examples of SMILE representations are
1) dinitrogen with structure N ≡ N (N#N), 2) methyl isocyanate
with structure CH3 − N = C = O (CN=C=O), where corresponding
SMILE representations are included in the brackets. Simply speak-
ing, the letters, e.g., C,N , generally represent the atoms, while
some symbols like −,=, # represent the bonds. We show some more
complicated examples in Figure 1.

2.2 Fingerprint Methods

Hash-based Fingerprints. Many hash-based methods has been
developed to generate unique molecular feature representation
[12, 15, 24]. One important class is called circular fingerprints.
Circular fingerprints generate each layer’s features by applying
a fixed hash function to the concatenated features of the neigh-
borhood in the previous layer. One of the most famous ones is
Extended-Connectivity FingerPrint (ECFP) [29]. However, due to
the non-invertible nature of the hash function, the hash-bashed
fingerprint methods usually do not encode enough information and
hence result in lower performance in the further predictive tasks.

Biologist-guided Local-Feature Fingerprints. Another mainstream
of traditional fingerprint methods is designed based on the bio-
logical experiments and the expertise knowledge and experience,
e.g., [26, 30]. Biologists look for several important task-related sub-
structures (fragments), e.g., CC(OH )CC for pro-solubility predic-
tion, and count those sub-structures as local features to produce
fingerprints. This kind of fingerprint methods usually work well
for specific tasks, but poorly generalize for other tasks.
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Figure 1: The examples of SMILE representations.

2.3 Deep-learning-based Models

The growth of deep learning [20, 39] has provided the great flex-
ibility and performance to create the molecular fingerprint from
data samples, without explicit human guide, [3, 9, 18, 31, 35, 43]. In
this subsection, we discuss two major classes, namely supervised
and unsupervised learning models.

SupervisedModels. Many of deep learning-based fingerprintmeth-
ods are still trained in a supervised-learning fashion [31, 38], which
is using only labeled molecular data samples as inputs and ad-
justing model weights according to their labels [21]. However, as
mentioned earlier, the performance of the deep supervised learning
models are generally limited by the availability of the labeled data.
The state-of-the-art work is the neural fingerprint [9]. The neural
fingerprint mimics the process of generating circular fingerprint
but instead the hash function is replaced by a non-linear activated
densely connected layer. This method is based on the deep graph
convolutional neural network [13, 21, 22, 25]. There are also few
attempts that address the insufficient label issue by using few-shot
learning strategies, e.g., [4]. To secure a satisfactory performance
and acquire enough labeled data, biologists need to perform a suf-
ficiently large number of tests on chemical molecules, which is
prohibitively expensive.

Unsupervised Models. Recently, few unsupervised fingerprint
methods, e.g., seq2seq fingerprint [43], are proposed to alleviate the
issue brought by the insufficient labeled data. These models gener-
ally train deep neural networks to provide strong vector representa-
tions using a big pool of unlabeled data. The vector representation
model is thereafter used for supervised training with other models,
e.g., Adaboost [10], GradientBoost [11], and RandomForest [14], etc.
Since the deep models are trained with a sufficiently large data-set,
the representation is expected to contain enough information to
provide good inference performance. However, this type of methods
are not trained end-to-end, meaning that the representation only
adjusts to the recovery task of the original raw representation. It is
robust to the specific labeled task, but might not provide optimal
inference performance for each task.

3 METHODOLOGY

In this section, we describe the details of our semi-supervised
seq3seq fingerprintmodel. First, an overview of the proposed seq3seq

fingerprint model is given. The proposed semi-supervised model is
trained in an end-to-end fashion by completing two tasks, a self-
recovery task for molecule (without any label) and an inference task
(with specific classification/regression label). After that, we describe
the recovery task and the inference task in detail, their loss func-
tions and how the two tasks are trained. Then the semi-supervised
loss is described. In the end, we offer a multi-task scaffolding view
from frame-semantic parsing [33] in natural language processing
area to explain the proposed model.

3.1 Overview

Different from traditional models [5, 43], the proposed seq3seq
fingerprint model works in a semi-supervised fashion. It means
that our training data comes from two sources, the labeled data, for
classification/regression, as well as the unlabeled data. The labeled
data contains the SMILE strings for molecule data and their labels,
such as acidity or other molecular activities. The unlabeled data
contains just molecular SMILE strings and the unlabeled data is
almost infinitely available. The proposed seq3seq fingerprint model
takes the mixture of the labeled data and unlabeled data together
as training inputs to the network. The work flow is depicted in
Figure 2. The semi-supervised training is done by two tasks: the
self-recovery task and the inference task. The whole pipeline is
illustrated in Figure 3.

3.2 The Duo Tasks in Seq3seq Fingerprint
Model

The Self-recovery Task The self-recovery task is to learn a vector
representation (usually noted as fingerprint in the drug discovery
literature) for each input molecular SMILE string. This task also
requires the SMILE string of the molecule can be recovered from
its fingerprint vector. It is an unsupervised learning problem since
no label information is required in training. As shown in Figure 3,
this task contains a perceiver network and an interpreter network.
This structure is motivated by the seq2seq model [32, 43]. The
original seq2seq model is used in machine translation [32]. It is to
learn a vector representation from a sentence in a given language,
e.g., English, then translate the learned representation into another
language such as French. Seq2seq fingerprint [43] combines the
idea from seq2seq learning and the idea of auto-encoder to learn
the vector representation for molecule.



Figure 2: This figures shows how semi-supervised training is used for our proposed model. We mix the unlabeled data and

labeled data together to train our proposed model. The SMILEs with label 0/1 come from labeled dataset and the SMILEs

without labels (N /A in the figure) come from unlabeled dataset.

We generalize the idea of seq2seq [5, 43] in two views. First, the
perceiver network and the interpreter network in the proposed
seq3seq fingerprint model can be any recurrent deep neural net-
works such as LSTM, GRU neural networks. The only limitation
is that the perceiver network could map the string tokens into a
vector representation and the interpreter could map the vector back
into string tokens. Second, we introduce unlabeled molecule data
into our training process to learn better representations. Instead
of using the SMILE strings of only the labeled molecule data, we
take advantage of the almost infinite unlabeled data and use both
unlabeled and labeled data for the self-recovery task to learn a
more accurate vector presentation than those models which only
use labeled data or unlabeled data separately. The loss function in
our proposed model follows the one in [43]. It is the sum of multiple
cross-entropy loss and we denote it as Lunsup .

The Inference Task The inference task in the proposed seq3seq
fingerprint model is to predict the activity of molecules. In the
proposed model, the inference task includes the perceiver network
and the inference network. The perceiver network is shared in both
self-recovery and inference tasks. It is trained by both labeled and
unlabeled data in an end-to-end fashion. The inference network
maps the seq3seq fingerprint to a final inference result on a certain
prediction task. The structure of the inference network can be any
trainable network which maps the vector into a inference value.
It allows huge flexibility for the choice of the inference network.
For instance, it could be a Convolutional Neural Network (CNN),
a Multi-Layer Perceptron (MLP) or even a single fully-connected
layer. Depending on whether the inference task is classification
or regression, the loss for the inference task Lsup could be either
classification loss (usually a cross entropy loss) or regression loss
(usually a �1 smooth/�2 distance loss). Since computing the Lsup

needs labels, the inference task is only trained on labeled data.

3.3 End-to-end Semi-supervised Learning

As shown in Figure 3, the semi-supervised loss Lsemi combines the
unsupervised loss Lunsup and the supervised loss Lsup together
as

Lsemi = Lunsup + λLsup . (1)

where λ is a hyper-parameter of the proposed model to balance the
two tasks. The proposed model is trained with both supervised data
and unsupervised data. When the data is unlabeled, the supervised
loss Lsup will be zero. Thus, in this case, only the part of the model
in self-recovery task will be trained. While the data is labeled, both
the part of the model in self-recovery and inference will be trained.
The end-to-end training avoids the multi-stage training, i.e., pre-
trained model training or separated classifier training [43]. As a
result, the proposed end-to-end model is expected to provide an
optimal inference performance as well as shorter training time for
specific task than that in a multi-stage model from [43].

3.4 A Multi-task Scaffolding View of Seq3seq
Fingerprint

In [43], the authors viewed seq2seq fingerprint as a machine trans-
lation problem in the Natural Language Processing (NLP) area,
with both source and target language set to be the SMILE represen-
tation. Interestingly, the proposed seq3seq fingerprint model can
be viewed, to some extent, as a multi-task scaffolding frame-

work [33] in the NLP area as well. In [33], the authors focus on
solving the frame-semantic parsing problem, which is basically find-
ing the action (frame) with its associated objects from a sentence.
For example, in sentence "Alice loves Bob.", the frame is "loves" with
its associated objects being "Alice" and "Bob". However, a single
sequence-to-frame network model generally performs poorly in
this task. In [33], they proposed to use a multi-task framework to
refine the predictions. Besides the frame parsing task, they also
introduce the syntactic parsing task. The second task is basically
predicting the word categories, e.g., nouns, adverbs, adjectives, etc.
For the previous "Alice loves Bob." sentence, the result will be that
"Alice" being noun, "loves" being verb and "Bob" being another
noun. In [33], it is demonstrated that the second task significantly
helps the success of the main (frame parsing) task. To sum up, the
multi-task scaffolding frame parsing framework utilizes a second
syntactic parsing task to reinforce the main task which is the frame

parsing. Our seq3seq fingerprint can be viewed in a very similar
fashion: the self-recovery task serves as the auxiliary task to aug-
ment the main prediction task. This modification is also further
demonstrated superior in our experiments described in Section 4.
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Figure 3: This figure shows the proposed seq3seq fingerprint model. The proposed model is trained through two tasks: a self-

recovery task and an inference task. The self-recovery task contains a perceiver network and an interpreter network; the

inference task shares the perceiver with self-recover task and has an inference network. The semi-supervised loss is the sum

of supervised loss and unsupervised loss.

4 EXPERIMENTS

In this section, we first detail the experimental setup, e.g., the data
set description, hardware and software settings, etc. Then we report
the benchmark performance of the seq3seq fingerprint methods
among state-of-the-art methods. Furthermore, to show the flexibil-
ity of our methods and complete our experiments, we offer ablation
studies for the sensitivity of the hyper-parameters of our seq3seq
fingerprint models, e.g., the multi-task balance weight λ, the Recur-
rent Neural Network (RNN) layer hidden size and layer number,
etc.

4.1 Experiment Setup

Datasets As we mentioned in the introduction, the seq3seq finger-
print can be trained from a mixture of both unlabeled and labeled
data. In practices, we usually use an unlabeled data set of a much
larger size than that of a labeled dataset.

Unlabeled Dataset For (large) unlabeled dataset, we use ZINC
drug-like datasets [17]. ZINC is a free database of commercially-
available compounds for virtual screening. The drug-like dataset
from ZINC contains 18,691,354 molecular SMILE representations.
LabeledDataset Two additional datasets, LogP and PM2-10k, were
used for semi-supervised training and test. They are obtained from
National Center for Advancing Translational Sciences (NCATS) at
National Institutes of Health (NIH). Each of them contains around
10,000 molecular SMILE representations with multiple scores, each
score quantifies some chemical property. Classification was con-
ducted on LogP and PM2-10k.

• LogP: Totally 10,850 samples were used from LogP, Each
sample contains a pair of a SMILE string and a water-octanol
partition coefficient (LogP) value. A threshold of 1.88 is used
to label the data. For those samples with LogP value smaller
than 1.88 were classified as negative samples, the rest were
labeled as positive samples.



Table 1: The comparison of classification accuracy on the LogP data. We report the average classification accuracy (Mean) and

the corresponding Standard Deviation (StDev) of 5-fold cross-validation result.

Circular [29] Neural [9] seq2seq [43] seq3seq (Ours)
Mean 36.74% 60.80% 76.64% 89.72%

StDev 0.74% 1.35% 0.43% 0.41%

Table 2: The comparison of classification accuracy on the PM2-10k data. We report the average classification accuracy (Mean)

and the corresponding Standard Deviation (StDev) of 5-fold cross-validation result.

Circular [29] Neural [9] seq2seq [43] seq3seq (Ours)
Mean 39.38% 52.27% 62.06% 68.45%

StDev 1.14% 1.12% 1.98% 0.80%

• PM2-10k: PM2-10k dataset contains 10,000 samples of SMILE
strings and binary promiscuous class labels. Similarly, a
threshold of 0.024896 was used to classify each SMILE. Sam-
ples with value larger than the threshold were considered as
positive 1; otherwise, labeled as 0.

We mix the ZINC drug-like dataset with the labeled dataset and
train the recovery and inference task simultaneously on the mixed
dataset.
Neural Network Structures As we mentioned earlier, the pro-
posed seq3seq fingerprint framework is super flexible in the choice
of the network structure. Theoretically, both perceiver and inter-
preter network can use any stacked Recurrent Neural Network
(RNN) with different layers and layer hidden sizes. Also the RNN
cell can be formed in different types, e.g., LSTM, GRU, etc. Due to
the page limit of this paper, we hereby assume the perceiver and
interpreter network always use the same type of RNN cells with
the same number of layers and hidden sizes. In this section, we only
discuss Gated Recurrent Unit (GRU) [7] as the RNN cell. Also, we
limit the discussion of the inference network to a single densely
connected layer with the output number equaling the number of
the classification class number. For simplicity, we useGRU − L −H
to represent the network structure, where GRU is the RNN cell
type, L ∈ N+ is the stacked RNN layer number and H ∈ N+ is
the RNN cell hidden size. For instance,GRU − 2 − 256 represents a
seq3seq model where both perceiver and interpreter network use
2-layer GRU cell with 256 hidden units.
Learning Hyper-parameters For optimization, we use the Sto-
chastic Gradient Descent (SGD) with a heuristic learning rate de-
caying schedule. The initial learning rate is 0.5 for any training
models. The learning rate will be decayed by a factor of 0.99 if the
test loss does not decrease after 600 training steps. The training
will automatically halt if the learning rate is smaller than 1e − 7.
Under the above hyper-parameter sets, the training of each model
in the semi-supervised setting can generally finish within a few
hours.
Evaluation Metrics Given that we have two tasks of our semi-
supervised learning framework, i.e., recovery and inference task,
we report two evaluation metrics for each model we trained. For re-
covery task, we use an Exact Match Accuracy (EMA) for evaluation.

This metric measure the portion of the exactly recovered sequence
within the entire set of sequences. Furthermore, we report the clas-
sification accuracy (hereafter SSLA for Semi-Supervised Learning
Accuracy) for our classification task.
Comparison Methods We compare our semi-supervised method
with the unsupervised seq2seq fingerprint method [43] as well
as several other state-of-the-art methods: the ECFP [29] (circular
fingerprint) and the neural fingerprint method [9]. We download
the official implementation of the seq2seq fingerprint 1 and care-
fully follow the experimental setting of the authors. The circular
fingerprint is a hand-crafted hash-based feature that was gener-
ated through RDKit 2. The neural fingerprint implementation is
obtained from https://github.com/HIPS/neural-fingerprint, which
we slightly modify to adapt our dataset file format.
Infrastructure and Software The seq3seq fingerprint method
was implemented through Tensorflow package [1], and our semi-
supervised model was trained in a self-hosted 16-GPU cluster plat-
form with Intel i7 6700K @ 4.00 GHz CPU, 64 Gigabytes RAM and
four Nvidia GTX 1080Ti GPUs on each workstation. The code will
be released upon the acceptance of this paper.

4.2 Comparison with State-of-the-art Methods

In Table 1 and 2, we report the 5-fold cross validation average clas-
sification accuracy on LogP and PM2-10k datasets. The proposed
methods are compared with ECFP (circular) fingerprint [12], neural
fingerprint [5] and seq2seq fingerprint [43]. For seq2seq fingerprint,
according to their paper, the seq2seq fingerprint with length 1024 +
Gradient Boosting always provides best performance, so we only
report those results on our paper.

It is shown that on both datasets, the seq3seq fingerprint always
provides best inference performance. On LogP dataset, our seq3seq
model performs significantly superior than the other state-of-the-
art methods, up to 13% in terms of classification accuracy (SSLA in
the tables). Compared with circular fingerprint, the seq3seq finger-
print is data-driven and contains enough information to be recov-
ered. The performance of neural fingerprint is generally limited by
the availability of the labeled data. Seq2seq fingerprint is the closest

1https://github.com/XericZephyr/seq2seq-fingerprint
2http://www.rdkit.org



work in terms of accuracy for now since it can be also trained on
the huge pool of unlabeled data, extracting a good representation
and train/infer with a sophisticated classification model. However,
seq2seq fingerprint is, unfortunately, not an end-to-end framework,
which means the recovery and inference training of seq2seq finger-
print are separate. The unsupervised recovery training can bring
in considerable amount of noise in the representation which limits
further improvements of the inference performance. The seq3seq
fingerprint, which uses the inference task to correct the recovery
task during training, can constantly provide the best performance
among all of the comparison methods.

Table 3: The performance variations with λ and GRUmodel

parameters for LogP data. Layer: the stacked layer number

of RNN cells. LD: Latent Dimension (hidden size) of RNN

cells. EMA: Exact Match Accuracy for self-recovery task.

SSLA: classification accuracy for inference task.

Layer LD λ EMA SSLA
2 128 1 86.31% 89.46%

0.1 91.80% 89.62%
0.01 90.23% 81.05%
0.001 91.42% 64.95%

2 256 1 93.59% 90.18%
0.1 94.52% 89.35%
0.01 95.77% 84.65%
0.001 95.48% 69.16%

Table 4: The performance variations with λ and GRUmodel

parameters for PM2-10k data. Layer: the stacked layer num-

ber of RNN cells. LD: Latent Dimension (hidden size) of RNN

cells. EMA: Exact Match Accuracy for self-recovery task.

SSLA: classification accuracy for inference task.

Layer LD λ EMA SSLA
2 256 1 87.48% 65.28%

0.1 89.84% 64.85%
0.01 91.73% 62.37%
0.001 91.31% 50.66%

3 256 1 82.40% 64.90%
0.1 87.61% 67.92%
0.01 89.33% 68.24%
0.001 90.25% 50.07%

4.3 Sensitivity Analysis of Multi-task Weight
Balance Parameters

Inmulti-taskmachine learning practice, theweight balancing hyper-
parameters among different tasks (in our case, λ in the loss function)
are sometimes critical and sensitive to data. This might not be an
intriguing feature in practices. However, our method is quite robust
and tolerant with λ variations. In this subsection, we report our
sensitivity studies of λ. We choose different scale of λ to see how the
final model performance responds to the variance of λ , showing the

robustness of our method with regard to different weight balancing
hyper-parameters.

In Table 3, 4 as well as Figure 5, we vary λ in the logarithm
scale with a base of 10. We tried 100, 10−1, 10−2, 10−3. On both
datasets, it looks that within a quite wide range of λ, i.e., 10−2 − 100,
the performance is quite robust to the change of λ. The reason
behind this robustness might be the huge unlabeled data pool used
in the training process. Given the model has been trained with a
sufficiently large (up to dozens of millions) molecular data pool,
the resulting model will automatically adjust to a small task weight
perturbation.

4.4 The Ablation Study of Neural Network
Structures

In this section, we provide a comprehensive study of the impacts
of different layers and layer hidden sizes of our seq3seq fingerprint
models. We report the 5-fold cross validation Exact Match Accuracy
(EMA) and the classification accuracy (SSLA) in Table 5 and 6 for
each of the two datasets, respectively. Figure 4 (a) and (b) also
illustrates the trends when varying the layer numbers and layer
hidden sizes.

Inference Task It is super exciting to reveal the robustness of
classification accuracy to the change of network structures

on both datasets. In Figure 4, the classification accuracy (blue bars)
almost stays at the same height when varying the layer numbers
and layer hidden sizes. This implies the importance of the represen-
tation learning inside the seq3seq fingerprint. This further support
the positive effects of the large-scale (up to dozens of millions)
unlabeled data utilization.

When the inference is super robust to the network changes, for
self-recovery task (in terms of EMA), we observe a decreasing trend
when increasing the layer depth (numbers). Meanwhile, the increas-
ing number of hidden units inside each layer generally yields better
EMA. This suggests that the improvement of self-recovery task has
higher reliance on the layer hidden sizes. Deeper network might
not always be an elixir for a simple auxiliary task like self-recovery.
This observation might help future network design. To simultane-
ously ensure high inference performance and reduce training time
(deeper network generally takes longer to train.), it might be a good
idea to use reasonably deep and wide RNN networks.

5 CONCLUSIONS

In this paper, we discuss a new semi-supervised deep learning
based molecular prediction system, called seq3seq fingerprint.
Our model is the first attempt in sequence-based deep learning
method utilizing both unlabeled and labeled data for drug discov-
ery. The reinforcement from the unlabeled data is demonstrated
to significantly improve the inference performance by enhancing
the representation power of the perceiver network. As a result,
the superior inference performance over multiple state-of-the-art
methods is revealed in our extensive experiments.

In the future, a potential direction might be improving the train-
ing algorithm [28, 41, 42]. Furthermore, our seq3seq fingerprint
method still share some common aspects with Natural Language
Processing (NLP) area as the seq2seq fingerprint does [43]. As de-
scribed in Section 3, it looks that we have found a new direction



Table 5: The comparison of 5-fold cross validation classification accuracy among different seq3seq GRU models on the LogP

data. Both average (Mean) and Standard Deviation (StDev) are reported for the 5-fold splits. FP Length: FingerPrint Length.

SSLA: classification accuracy for inference task. EMA: Exact Match Accuracy for self-recovery task.

GRU-2-128 GRU-3-128 GRU-4-128 GRU-5-128 GRU-2-256 GRU-3-256 GRU-4-256 GRU-5-256
FP Length 256 384 512 640 512 768 1024 1280
SSLA Mean 89.62% 89.12% 89.05% 89.72% 89.48% 89.64% 88.90% 88.11%
SSLA StDev 0.62% 0.22% 0.10% 0.41% 0.44% 0.42% 0.31% 0.40%
EMA Mean 91.39% 85.75% 77.13% 68.64% 96.13% 94.24% 87.99% 83.86%
EMA StDev 0.46% 0.53% 0.56% 0.80% 0.21% 0.31% 0.45% 0.41%

Table 6: The comparison of 5-fold cross validation classification accuracy among different seq3seq GRU models on the PM2-

10k data. Both average (Mean) and Standard Deviation (StDev) are reported for the 5-fold splits. FP Length: FingerPrint Length.

SSLA: classification accuracy for inference task. EMA: Exact Match Accuracy for self-recovery task.

GRU-2-128 GRU-3-128 GRU-4-128 GRU-5-128 GRU-2-256 GRU-3-256 GRU-4-256 GRU-5-256
FP Length 256 384 512 640 512 768 1024 1280
SSLA Mean 65.65% 67.11% 65.80% 67.23% 66.74% 68.08% 68.45% 67.09%
SSLA StDev 0.19% 0.85% 0.61% 0.52% 0.57% 0.35% 0.80% 0.67%
EMA Mean 83.84% 81.24% 78.60% 74.38% 92.49% 91.72% 87.36% 82.64%
EMA StDev 0.45% 0.67% 0.88% 0.88% 0.37% 0.25% 0.29% 0.76%
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(b) Model hyper-parameter comparison on the PM2-10k data
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Figure 4: Impacts of the network structures on different metrics on both LogP and PM2-10k dataset. 1) The robustness of

inference performance (SSLA, blue bars) is revealed. 2) The positive and negative correlations with regard to the self-recovery

performance (EMA, red bars) are observed for RNN network depths and widths, respectively.

to invent new drug discovery methods. In the future, it might be
interesting to further investigate bonds between drug discovery
and NLP area, which might bring in many novel methods to further
accelerate drug discovery research.
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